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PREFACE

The material for this book has grown out of lecture-courses given in
the University of Oxford between 1958 and 1962 and in the University
of Texas during the spring semester of 1961, where indeed I chiefiv
found the time to write it. It has also subsequently been used for a
one-semester course in Claremont, California, and for z summer-
school course at the University of California, Los Angeles. The book
is intended in the first place for use in connection with one-term or
one-semester introductory logic courses at university level:; but I see
no reason why it could not be emploved in schools, and it is my
hope and expectation that logic will increasingly be taught at school
fevel. No prior knowledge of either philosophy or mathematics
(except the ability to count znd to recognize some elementary
algebraic equations) is assumed, and the book is addressed to those
who find mathematical thinking difficult rather than to those who
find it easy. Thus an intelligent layman working on his own should
find it in large part comprehensible,

TO THE STUDENT

The aim of the book is to provide the student with a good working
knowledge of the propositional and predicate calculi—the founda-
tions upon which modern symbolic logic is built. Accordingly,
emphasis is placed on the actual technique of proof-discovery.
Within this framework, I have tried to sacrifice formal accuracy as
littie as possible to intuitive plausibility, though on occasion, and in
the early stages, this has sometimes quite deliberately been done.
The result is probably dry reading but should not be hard going.
On the other hand, I have included certain more theoretical sections,
partly to indicate the style of more advanced logic and partly as a
bait for the better student who might be inclined to pursue the subject
further (the bibliography and notes following it are designed to guide
him in this regard). In particular, Chapter 2, Sections 4 and 5, and .
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Preface

Chapter 4, Section 2, are 2 good deal more difficult than the rest of
the book, and should be intelligently skipped (i.e. read through
quickly) by the ordinary reader: nothing in what follows them hinges
essentially on their contents.

In outline, we study in Chapter 1 some elementary proofs in the
propositional calculus, and acquire familiarity with its rules of
derivation. In Chapter 2, after mastering the vocabulary and gram-
mar of this calculus, the student is introduced to truth-tables, which
are then used as an independent control on the soundness and
completeness of these rules. Chapter 3 presents the predicate calculus
rules, and its basic results, in the same relatively informal way as the
propositional caiculus was treated in Chapier 1. Chapter 4 begins by
sketching the theory of the predicate calculus (Sections 1 and 2), but
continues with applications of it: first, with respect to identity; second,
with respect to the traditional theory of the syllogism; third, with
respect to properties of relations. Normal forms, which are part of
the syllabus of many logic courses but which tend to receive scant
attention in logic texts, are relegated to Appendix A (which can be
read after Chapter 2, Section 3). Appendix B introduces the theory
of classes, and may form a bridge between this and more advanced
texts.

TGO THE TEACHER

Natural deduction techniques are used throughout, and no mention
is made of axiomatic developments of either calculus, though
references are given in the bibliography. The manner of presentation
of proofs owes most to Suppes [24],* who is foliowed in this respect
by Mates [14]. The device of listing assumptions by number on the
left of each line of a proof seems to me much clearer than more
traditional approaches. The propositional calculus rules stem in
essentials from Gentzen. They have the great merit that nearly all
standard results can be obtained from them in proofs of not more
than fifteen lines, whilst also being reasomably plausible to philo-
sophically suspicious students. Thus they lend themselves to the
generation of good exercises, but also keep the student within the
confines of a clearly defined set of rules. Experts will notice that, if
one half of the rule of double negation (* from— —A to derive A *) is

! Square bracket-references here and in the body of the text are to titles in
the bibliography.
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Preface

dropped, the resultant set defines Johannson’s minimal calculus, and,
if to this set is added the rule ¢ from 2 contradiction to derive any-
thing ’, the resultant set defines the intwitionist propositional calcuius,
Good students become interested in these facts, once the implausi-
bility of the law of excluded middle is suggested to them.

The predicate calculus rules again come from Gentzen, and are to
be found in Fitch [4]; they reappear also in the recent book by Mates
[14]. Thev have the property that, if added to the weaker sets of
rules just mentioned, they vield the appropriate corresponding predi-
cate caiculus. A feature of our treatment that deserves mention 1§
that the role normally plaved by free variables is here played by a
different styie of symbol, called an arbitrary name. Thus formation-
rules become more complex than is usual; but such oddities as
‘ vacuous quantifiers ® disappear, and it proves possible to state
guantifier-rules in a less restriction-infested form. This feature is
not new: it goes back at least to Hilbert and Bernays, has been used
by Hintikka, and appears in a variant form in Mates [i4]. My
experience has been that it causes students much less trouble than
~ the more familiar notation.?

Any student worth his salt is going to be suspicious of the para-
doxes of material implication. This fact counts strongly against
beginning the treatment of the propositional calculus with the truth-
table method. Accordingly, I have tried to woo the student in
Chapter 1 into acceptance of a set of rules from which the paradoxes
flow as natural consequences in Chapter 2; the truth-table method
is then partly justified by appeal to these rules. Any teacher, there-
fore, who thinks that the paradoxes present rea/ problems will
(rightly) find my tactics underhand.

INTERNAL REFERENCES

Propositional calculus results are numbered 1-55, as they appear in
Chapters 1 and 2. Predicate calculus results are numbered 100-165,
also as they appear (Chapters 3 and 4). Certain results in the theory
of classes are numbered 200-231 (Appendix B). Where such results
are later used or referred to, I mention them by their number,
Occasionally, the results in exercises are also mentioned; thus
©2.4.1(c)’ refers to Exercise 1(c) of Chapter 2, Section 4. A number

' should add that footnote 460 of Church [2] is critical of this device; but
his case says nothing against its pedagogic atiractiveness.

X



Preface

in brackets refers either to a line of a proof or 16 & sentence or
formula so numbered earlier in the same section; context will always
determine which.

My thanks are due to Father Ivo Thomas, 0.p.. who read Chapter
1, and to Professor James Thomson, who read the whole book, for
heipful comments and the correction of many errors. 1 am greatly
indebted to my wife and to Miss Susan Liddiard for typing assistance,
and to Mr Bruce Marshall for help with proof-reading and indexing.
I owe 2 lot to discussions with colleagues about the best way to
formulate logicai rules: in particular, to Professor Patrick Suppes
and Michael Dummett, whose idea it was (in 1957) that | should
write this book. But my greatest debt is to the many students, in
Oxford, Texas, and elsewhere, who forced me by their questions and
complaints to write more clearly about the matters involved. The
many faults of exposition that remain, of course, are mine.

I should like to dedicate this book to Arthur Prior, without whose
encouragement and enthusiasm I would never have entered logic,
and to the memory of my father, who I hope would have enjoyed it.

E.J. L.

Claremont, California
March 1965



CHAPTER 1
The Propositional Calculus |

I THE NATURE OF LOGIC

It is not easy, and perbaps not even useful, 1o explamn briefiy what
logic is. Like most subjects, it comprises many different kinds of
problem and has no exact boundaries; at one end, it shades off into
mathernatics, at another, mito philosophy. The best way 1o find out
what logic is 15 to do some. Nope the less, a few very general
remarks about the subject may belp to set the stage for the rest of
this book.

Logic’s main congern is with the soundness and unsoundness of
arguments. and it attempts to make as precise ac possible the
conditions under which an argument—from whatever field of study
—is acceptable. But this statement needs some elucidation: we need

to say, first, what an_argument is; seco%d what we understand by

§<)urmnes& thgd how we can make precise the conditions for sonnd
argumentation; and foyrth, how these conditions can be independent

of the field from which the argument is drawn. Let us take these
points in turn.

Typically, an argument consists of certain statements or pro-
W preémsses from which a certain other statement
or proposition, called its concluszon is claimed to follow. We mark,
in English, the claim that the’ conclusion foliows from the premisses
by using such words as ‘ so * and ‘ therefore * between premisses and
conclusion. Instead of saving that conclusions do or do not follow
from premisses, logicians sometimes say that premisses do or de nat
entail conclusions. When an argument is used seriously by someone
(ang not, for example, just cited as an illustration), that person is
asserting the premisses to be true and also asserting the conclusion
to be true on the strength of the premisses. This is what we mean
by drawing that conclusion from those premisses.

Logicians are concerned with whether z conclusion does or does
not follow from the given premisses. If it does, then the argument
in question is said to be sound; otherwise unsound. Often the
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The Fropositional Caleulus |

terms ‘valid * and ‘invabid " are used in place of ‘sound’ and
‘unsound . The guestion of the soundness or umsoundness of

arguments niust be care‘}zm dz%memcnm from the question of the
fruth or falsity of the propositions, whether premisses or conclu-
siop. in the argument. For example, 2 true conclusion can be
soundly drawn from false premisses, or 2 mixture of true and false
premisses: thus in the argument

(I} Napoleon was German; all Germans are Europeans;
therefore Napoleon was European

we find a true conclusion soundly drawn from premisses the first
of which 1s false and the second true. Again, a false conclusion
can be soundly drawn from false premisses, or 2 mixture of true
and false premisses: thus in the argument

(2) Napoleon was German; all Germans are Asiatics:
therefore Napoleon was Asiatic

a false conclusion 1s soundly drawn from two false premisses. On
the other hand, an argument is not necessarily sound just because
premisses and conclusion are true: thus in the argument

(3) Napoleon was French; all Frenchman are Europeans;
therefore Hitler was Austrian

all the propositions are true, but no one would say that the con-
clusion followed from the premisses.

The basic connection betwcen the soundness or unsoundness of
an argument aréd the truth or falsity of the constituent propositions.
is the following: an argument cannot be sound if its premisses are
all true and its conclusion false. A necessarv condi ]
reasoning 1s that from truths only truths follow. This condition is
of course not sufficient for soundness, as we see from (3), where we
have true premisses and a true conclusion but not a sound argument.
But, for an argument to be sound, it must ar least be the case that
if all the premisses are true then so is the conclusion. Now the
logician 1s primarily interested in conditions for soundness rather
than the actual truth or falsity of premisses and conclusion; but
he may be secondarily interested in truth and falsity because of
this connection between them and soundness.

p




The Nature of Logic

What_technigues does the logician use ic make precise th
conditions for sound argumentation? The bulk of this book is in
a way a detailed answer to this question; but for the moment we
may say that his most useful device is the adoption of a special
symbolism, z jogical notation, for the use of which exact rules can
be given. Because of this feature the subject 15 sometimes called
Symbolic logic. (It 1 sometimes also called mathematical logic,
partly because the rigour achieved is similar to that already belonging
to mathematics, and partly because contemporary logicians have
been especially interesied in arguments drawn from the feld of
mathematics.) In order to undersiand the importance of symbolism
in logic, we should remind ourselves of the analogous importance
of special mathematical symbols.

Consider the following elementary algebraic equation:
(4)y x* — y2 = (x + y) (x — y},

and imagine how difficult it would be to express this proposition in
ordinary English, without the use of variables “x’, “y’, brackets,
and the minus and plus signs. Perhaps the best we couid achieve
would be:

(5) The result of subtracting the square of one number from
the square of a second gives the same number as is
obtained by adding the two numbers, subtracting the
first from the second, and ther multiplying the results of
these two calculations.

Comparing (4) with (5), we see that (4) has at least three advantages
over (5) as an expression for the same proposition. It is briefer.
It is glearer—at least once the mathematical symbols are under-
stood. And it is more exact, The same advantages—brevity, clarity,
and exactness—are obtained for logic by the use of special logical
symbols.

Equation (4) holds true for any pair of numbers x and y. Hence,
if we choose x to be 15 and y to be 7, we have, as a consequence
of (4): ‘

6) 152 — =154+ T (A5 -7).
If we now compare (6) with (4), we can see that (6) is obtained

3



The Propositional Coleulus 1

from (4) simply by putting “ 15° in place of ‘x ' and 7 in place
of “y’. In this way we can check that (6) does indeed foliow from
(4), simply by a glance to see that we have made the right sub-
stitutions for the variables. But if (6) had been expressed in ordinary
English, as (4) was in (5), it would have been far harder to see
whether it was soundly concluded from (5). Mathematical symbols
make both the doing and the checking of mathematical calculations
far easier. Similarly, logical symbols are humanly indispensable if
we are 1o argue correctly and check the soundness of arguments
efficiently.

If in the sequel it seems irritating that a special notation for
logical work has io be learned, the reader should remember that he
is only mastering for argumentation what he masters for calculation
when he learns the correct use of ‘++°,  — ' and so on. This
device, which logic has copied from mathematics, is the logician’s
most powerful tool for checking the soundness and unsoundness of
arguments.

Our final question in this section is how the conditions for valid
argument can be studied independently of the fields from whick
arguments are drawn: if this could not be done there would be no
separate study called logic. A simple example will suffice for the
moment. If we compare the two arguments

(7) Tweety is a robin; no robins are migrants:
therefore Tweety is not a migrant
and
(8) Oxygen is an element: no elements are molecular;
therefore oxygen is not molecular,

both of which are sound (one drawn from ornithology, the other
from chemistry), it is hard to escape the feeling that they have
something in common. This something is called by logicians their
logical form, and we shall have more to say about it later. For the
moment, let us try to analyse out in a preliminary way this common
form. The first premiss of both (7) and (8) affirms that a certain
particular thing, call it m (Tweety in (7), oxygen in (8)}, has a certain
property, call it F (being a robin in (7), being an element in 8.
The second premiss of (7) and (8) affirms that nothing with this
property F has a certain other property, call it G (being a migrant
in (7), being molecular in (8)). And the conclusion of (7) and (8)

4



Conditionals and Negation

affiras that therefore the object m does not have the property G.
We may state the common pattern of (7} and (8) as follows:

{9} m has F; nothing with F has ¢
therefore m does not have G,

Once the common logical form has been extracted as in (9), 2 new
feature of it comes to light. Whaiever object m is picked out,
whatever properties F and & are chosen to be, the patiern (9) will
be valid: (9) as it stands is a pattern of a valid argument. For
exampie, take m to be Jenkins, F and G to be the properties respect-
ively of being a bachelor and being married : then (9) becomes

{10} Jenkins is a bachelor; no bachelors are married;
therefore Jenkins is not married,

which, like (7} and (8), is a sound argument. Yet (9} is not tied to
any particular subject-matter, whether it be ornithology, chemistry,
or the law; the special termunology—' migrant’, ° molecular’,
* bachelor "—has disappeared in favour of schematic letters * F,
‘G, m.

Form can thus be studied independently of subject-matter, and
it is mainly in virtue of their form, as it turns out, rather than their
subject-matter that arguments are valid or invalid. Hence it js the
forms of argument. rather thap actual arsuments themselves, that
logic investigates. '

To sum up the contents of this section, we e logic as
the study. by symbolic means, of the exact conditions under whidh
patterns of argument are valid or invalid: it being understood that
yalidity and invalidity are to be carefully distinguished from the

elated notions of truth and y. But this account is provisional
in the sense that it will be better understood in the hight of what is
to follow.

2 CONDITIONALS AND NEGATION

When we analyse the logical form of arguments (2s we did in the
last section to obtain (9) from (7) and (8)), words which relate to
specific subject-matters disappear but other words remain; this
residual vocabulary constitutes the words in which the logician is
primarily interested, for it is on their properties that validity hinges.

S



The Propositional Calculus 1

Of particular importance in this vocabulary are the words ° ...
then ..., *... and ..., ‘either ... or ... and ‘mnot’ 7%
chapter and the next are in fact devoted to 2 systematic study of
the exact rules for their proper deployment in arguing. We have
no single grammatical term for these words in ordiary speech, but
in logic they may be calied sentence-forming operators on sentences.
I shali try to explain why they merit this formidabie title.

In arguments, as we have already seen, Propositions occur; an
argument js a certain complex of propositions, among which we
may distinguish premisses and conclusion. Propositions are
expressed. in natural languages. in senfence However, not _ali

sentences express propaositions; some are used to ask quegtmgg (such
as * Where is Jack?’), others to give orders (such as ¢ Open the
door "}, Where it is desirable to distinguish het een sentences
expressing propositions and other kinds of senfence. Jogicians
sometimes call the former decigrative sentences. Always, when |
speak of sentences, it is declarative sentences I have in mind, unless
there is some explicit denial. Now if we seiect two English sentences,
say ‘it is raining * and ‘it is snowing ’, then we may suitably place
“if ...then ..., .. and ..., and ‘either ... or... to obtain
the new English sentences: ‘ if it is raiming, then it is snowing ',
‘it is raining and it is snowing ', and * either it is raining or it is
snowing *. The two original sentences have merely been substituted
for the two blanksin “if .. .then.. .’,*. . .and.. J,and ‘ either . . .
or.... Further, if we select one English sentence, say ‘it is
raining ’, then we may suitably place ‘not’ to obtain the mew
English sentence: * it is nor raining >. Thus, grammatically speaking,
the effect of these words is to form new sentences out of (one or
two) given sentences. Hence I call them sentence-forming operators
on sentences. Other examples are: ‘ although . . . nevertheless . . .’
(requiring two sentences to complete it), ‘ because . . .y ... {also
requiring two), and ‘it is said that ...’ (requiring only one).

(This book is written in English, and so mentions English sentences
and words; but the above account could be applied, by appropriate
translation, to all languages I know of. There is nothing parochial
about logic, despite this appearance to the contrary.)

In this section we are concerned with the rules for manipulating
‘i ... then.. .’ and ‘not’, and we begin by introducing special
logical symbols for these operators. Sq_p_g_qse that P and Q are any

6




Conditionals and Negatior

two propositions: then we shall write the proposition that if P then
O as:

P O

Again_ lgt P be any proposition: then we shall write the proposition
that it is not the case that P as:

=r.

The proposition F-» ¢ will be called 2 conditiongl proposition, or
simply & conditional, witk the proposition F as its antecedent and the
proposition O as its consequen:. For exampie, the antecedent of the
proposition that if it is raining then it is snowing is the proposition
that 1t is raining. and its consequent is the proposition that it is
snowing. The proposition — P will be called the negation of F. For
example, the proposition that it is not snowing is the negation of
the proposition that it is snowing.

The letters " P°, ' ¢ used here, should be compared with the
variables ‘ x ', ‘v’ of aigebra; thev mav be considered as a kind of
‘variable, and are frequently called by logicians prapasigmaf vari .
In introducing the minus sign * — ’, I might say: let x and y be any
two numbers; then [ shall write the result of subtracting y from x
as x — y. In an analogous way I introduced ‘-’ above, using
propositional variables in place of numerical variables, since in logic
we are concerned with propositions not numbers.

Propositional variables will also help us to express the logical form
of complex propositions (compare the use of schematic letters < F°
and ‘G " in (9) of Section 1). Consider, for example, the complex
proposition

(1) If it is raining, then it is not the case that if it is not
snowing it is not raining.
Let us use ‘P’ for the proposition that it is raining and * ¢ " for
the proposition that it is snowing. Then, with the aid of * >’ and
¢ — 7 we may write (1} symbolically as:

(2) P —(—Q > —P)
(we introduce brackets here in an entirely obvious way). (2}, as well
as being a kind of shorthand for (1), with the advantages of brevity

and clarity—once at least the feeling of strangeness associated with
novel symbolism has worn off—succeeds in expressing the logical

7



The Propositional Calculus 7

form of (I). We can see that (2) also gives the logical form of the
quite different proposition

{3} If there is a fire, then it is not the case that if there is not
smoke there is not a fire:

here P is a stand-in for the proposition that there is 2 fire, and O for
the proposition that there is smoke.

When we argue, we draw or deduce or derive a conclusion from
given premisses; in logic we formulate rules, called rules of derivarion
whose object is so to control the activity of deduction as to ensure
that the conclusion reached is validly reached. Another feature of
ogdinary argumentation is that it proceeds jn sigges : the conclusio
of one step is used as 2 premiss for 2 new sten, and so_on until 4
final conclusion is reached. It will be helpful. therefore. if we.
distingugsh al_once between assumptions apnd premisses. By an
assumpiion, we shall understand a pﬁdnosiiiogn whifh is, in 2 given
stretch of arpumentation, the conclusion of ne step of reasoning,
but which is rather taken for granted at the outset of the iotal
argument. By a premiss, we shall understand a proposition which
is used, at a particular stage in the total argument, to obtain 2
certain conclusion. An assumption may he—and characteristically
will be—used as a premiss at a given stage in an argument in order
to obtain a certain conclusion. This conclusion may itself then be
used as a premiss for & further step in the argument, and so on.

Thus a premiss at a certain stage will be ej ass tio
the argument as a whole or 2 conclusion of an earlier phase in the
argument. At any gi stage in the total we Lhave,

a_conclusion obtained ultimately from a_ certain assumption or
combination of assumptions, and we shall sav that this conclusion
rests on or depends on that assumption (those assumptions).
Roughly, our procedure in setting out arguments will be as
follows. Each step will be marked by a new line, and each line will
be numbered consecutively. On each line will appear either an
assumption of the argument as a whole or a conclusion drawn from
propositions at earlier lines and based on these propositions as
premisses. To the right of each proposition will be stated the rule of
derivation used to justify its appearance at that stage and {where
necessary) the numbers of the premisses used. To the left of each

8




Conditionals and Negation

proposition will appear the numbers of the original assumptions on
which the argument at that stage depends.

Rule of Assumptions (A)

The first rule of derivation te be introduced is the rule of assumptions,
which we call A. This rule permits us to introduce at any stage of
an argument any proposition we choose as an assumption of the
argument. We simply write the proposition down as 2 new line,
write * A’ to the right of it, and to the Ieft of it we put its own
number to show that it depends on itself as an assumption. Thus
we might begin an argument

I WP=Q A

This means that our first step has been to assume the proposition
P~ () by the rule of assumptions. Or after nine lines of argument
we may proceed

10 (10) —Q A

This means that at the tenth line we assume the proposition — @
by the rule of assumptions.

It may seem dangerously liberal that the rule of assumptions
imposes no limits on the kind of assumptions we may make (in
particular there is no guestion of ensuring that assumptions made
are true). This is best understood by reminding ourselves that the
logician’s concern is with the soundness of the argument rather than
the truth or falsity of any assumptions made; hence A allows us to
make any assumptions we please—the job of the logician is to make
sure that any conclusion based on them is validly based, nor to
investigate their credentials.

Modus ponendo pornens (MPP)

The second rule of derivation concerns the operator =. We name it
modus ponendo ponens, abbreviated to MPP, which was the medieval
term for a closely related principle of reasoning. Given as premisses
a conditional proposition and the antecedent of that conditional,
MPP permits us to draw the consequent of the conditional as a
conclusion. For example, given P Q and P, we can deduce Q.
Or, to take a more complicated example, given — Q=+ (~ P> Q)

9



The Propositional Caleulus 7

and — ¢, we can deduce —F - Q. Written more formally, these
two arguments become:

1 1 (L P>0Q A

2 ()P A

12 (3)Q 1,2 MPP
2 1 () =0 (—PsQ) A

2 () —¢ A

1.2 (3) —PsQ 1,2 MPP

On the first two lines of each of these arguments, we make the
required assumptions by the rule A, numbering on the ieft accord-
ingly. At line (3}, we draw the appropriate conclusion by the rule
MPP: the consequent of the conditional at line (1}, given at line (2)
the antecedent of that conditional. To the right at line (3) in both
cases, we note the rule used (MPP) together with the numbers of
the premisses used in this application of the rule. To the left at
line (3), we mark the assumptions on which the conclusion rests—
in this case again (1) and (2), which here are both premisses for the
application of MPP and assumptions of the total argument.

Here are more complicated examples, using only the two rules A
and MPP. I shall show first that, given the assumptions P -+ (,
¢ - R, and F, we may validly conclude R.

3001 WP>Q A
2 (Q0+R A

3 (P A
13 (40 1,3 MPP
1,23 (5 R 2,4 MPP

The first three lines here merely make the necessary assumptions.
At line (4), we draw by MPP the conclusion @, given at line () the
conditional P -~ ¢ and at line (3) its antecedent P. Hence (1) and
(3) are mentioned to the right as premisses for the application of
the rule and to the left as the assumptions used at that stage. At
line (5), we use O, the conclusion at line (4), as a premiss for a new
application of MPP, noting that @ is the antecedent of the con-
ditional @ -~ R assumed at line (2). So we obtain the desired

10
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conclusion R from (2} and (4) as premisses. The numbers 2 and 4
appear ot the right accordingly. In deciding what assumptions to
cite on the left, we note that (4) rests on (1) and (3}, whilst (2) rests
only on itself: we * pool ’ these assumptions to obtain (1), (2), and (3).

Secondly, I show that, given P (0 > R}, P O, and P, we
may validly conclude R

4 i (P A(Q=+ Ry A
Z {2y Fs QO A
3 (3P A
13 (4 Q- R 1,3 MPP
23 (50 2.3 MPP
.23 (6 R 4,5 MPF

At lines (4) and (5}, the premisses used for the applications of
MPP are also assumptions, so that the same pair of pumbers
appears on the right and on the left. But at line (6), the premisses
are the conditional (4), O - R, and its antecedent (5), O, neither of
which are assumptions of the argument as a whole: in determining
the numbers on the left, therefore, we ‘ pool’ the assumptions on
which (4} and (5) rest—(1}, (3) and (2), (3) respectively—to obtain
(1}, (2}, and (3).

It should be obvious that MPP is a reliable principle of reasoning.
1t can never fead us, at least, from true premisses to a false conclusion.
For it 15 a basic feature of our use of “if ... then ...’ that if 2
conditionalis.true and if also its antecedent is true then its consequent
must be true too, and MPP precisely allows us to affirm as 2 con-
clusion the consequent of a conditional, given as premisses the
conditional itself and its antecedent.

It will be a help to have an abbreviation for the cumbersome
expression ¢ given as assumptions . . ., we may validly conclude . . ",
To this end, I introduce the symbol

F
called often but misieadingly in the literature of logic the assertion-
sign. It may conveniently be read as ° therefore ’. Before it, we list
(in any order) our assumptions, and after it we write the conclusion

drawn. Using this notation, we may conveniently sum up the four
pieces of reasoning above (from now on to be called proofs) thus:

1
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PP O, PF O

20> (P> Q) ~QF—Ps O:
3P O, O R P+ ER;

4FP> (0> R, P>Q PR

Results obtained in this form we shall call sequents. Thus a sequent
is an argumeni-frame containing 2 set of assumptions and & con-
clusion which is claimed to follow from them. Effectively, sequents
which we can prove embody valid patterns of argument in the sense
that, if we take the P, Q, R, ... in a proved sequent to be actual
propositions, then, reading ‘F~ as ‘ therefore ', we obiain 2 valid
argument. The propositions to the left of * + 7 become assumptions
of the argument, and the proposition to the right becomes a con-
clusion validly drawn from those assumptions. From this point of
view, in comstructing proofs we are demonstrating the validity of
patterns of argument, which is one of the logician’s chief concerns.

The sequent proved can be written down immediately from the
last line of the proof.* In place of the numbers on the left, we write
the propositions appearing on the corresponding lines; then we
place the assertion sign; finally, we add as conclusion the proposition
on the last line itself. To see this, the four sequents above should
be compared with the last lines of the corresponding proofs.

Modus tollendo tollens (MTT)

The third rule of derivation concerns both -~ and —. Again we use
a medieval term for it, modus tolliendo tollens, abbreviated to MTT.
Given as premisses a conditional proposition and the negation of its
consequent, MTT permits us to draw rhe negation of the antecedent
of the conditional as a conclusion.

Here are two simple examples of the use of MTT. 1 set the
precedent of citing the sequent proved before the proof.

S§P> QO -0F—P

! (H P> Q A
2 @) —0 A
1,2 (3) —P 1,2 MTT

* Thus we take 2 proof as a proof of a sequent; but it is also natural to say, in
a different sense, that in a proof a conclusion is proved from certain assumptions.
This resultant ambiguity in the word ‘ prove ’ is fairly harmiess,

12
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6 P> (0 F), P, —~RtF~—(Q
I (LW P> (R A

2 (2} P A
3 (3) —R A
L2 (4 QR 1,2 MPP
1,23 (5 —0 3,4 MTT

For line (5), we notice that (3), — R, is the negation of the consequent
of the conditional (4}, ¢ - R, so that by MTT we may conclude
the negation — ¢ of the antecedent of (4): 1o the right, we cite (3)
and (4}, and to the left (1) and (2)—the assumptions on which (4
rests—and (3}—the assumption, namely itself, on which (3) rests.

We may see the soundness of the rule MTT by ordinary examples.
The following are evidently sound arguments:

(4) If Napoleon was Chinese, then he was Asiatic; Napoleon
was not Asiatic; therefore he was not Chinese.

{5) If Napoleon was French, then he was European ; Napoleon
was not European; therefore he was not French.

In both cases, given a conditional and the negation of its consequent,
we deduce validly the negation of its antecedent : in (4} the conclusion
is true, and so are both premisses; in (5) the conclusion is false, but
so is one premiss. It should be clear that this pattern of reasoning
will never lead from premisses which are all true to a false conclusion.

Double negation (DN)

The fourth rule of derivation purely concerns negation. By the
double negation of a proposition P we understand the proposition
— —P. Intuitively, to affirm that it is not the case that it is not the
case that it is raining is the same as to affirm that it is raining, and
this holds for any proposition whatsoever : the double negation of a
proposition is identical with the proposition itself. Hence from the
double negation of a proposition we can derive validly the propo-
sition, and vice versa. This principle lies behind the rule of double
negation (DN): given as premiss the double negation of a propo-
sition, DN permits us to draw the proposition itself as conclusion;
and given as premiss any proposition, DN permits us to draw its

13
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double negation as conciusion. Unlike MPP and MTT, DN
requires only one premiss for its application, not two. Its use is
exemplified in the following proofs.

TP —0 Oy —F
1 ()P>—Q A

2 @0 A
2 @)——Q 2DN
12 (@) —P 1.3 MTT

Mote especially that, since the conseguent of (1} P — 0 is —
we need to obtain the negation of this, ie. — — ¢, before we can
apply the rule MTT . hence we require the siep of DN from (2} to
{3) before the use of MTT at line (4).

§ —P> O, —(0+ P
I (D) ~Pa O A
2 (D) —Q A
12 (3) ——P 1.2 MTT
12 (4) P 3 DN

Note especially that from (1) and (2) by MTT we draw as conclusion
the negation of the antecedent of (1}, i.e. ——P: hence we require
the step of DN from (3) to (4) in order to obtain the conclusion P,
Note also that the conclusion of an application of DN rests on
exactly the same assumptions as its premiss,

Conditional proof (CP)

The rules MPP and MTT enable us to use a conditional premiss,
together with either its antecedent or the negation of its consequent,
in order to obtain a certain conclusion, either its consequent or
the negation of its antecedent. But how may we derive a conditional
conclusion? The most natural device is to take the antecedent of
the conditional we wish to prove as an extra assumption, and aim
to derive its consequent as a conclusion: if we succeed, we may take
this as a proof of the original conditional from the original
assumptions (if any). For example, given that all Germans are

14



Conditionals and Negation

Europeans, how mught we prove that if MNapoleon was German
then he was Eurcopean? We naturally say: suppose Napoleon was
German (here we take the antecedent of the conditional to be
proved as an extra assumption); now all Germans are BEuropeans
{the given assumption}; therefore Napoleon was European (here we
derive the consequent as conciusion); so if Napoleon was German
he was European (here we treat the previous steps of the argument
as a proof of the desired conditional),

The fifth ruie of derivation, the rule of conditional proof (CP),
imitates exactly this natural procedure and is our most general
device for obtaining conditional conclusions. Its working is harder
to grasp than that of the earlier rules, but familiarity with it is
indispensable. I first state it, then exemplhify and discuss it.

Suppose some proposition {call it B} depends, as one of its
assurmnptions, on & proposition {call 1t A); then CP permits us to
derive the conclusion A -» B on the remaining assumptions (if any).
in other words, at a certain stage in a proof we have derived the
conclusion B from assumption A {(and perhaps other assumptions);
then CP enabies us to take this as a proof of A - B from the other
assumptions {if any).

For example:

G P> (QOF 0 —F

I (Y P> O A
2 Q-0 A
1,2 (3) —P 1,2 MTT

1 (4 —Q-~—P 23CP

In attempting to derive the conditional — @ - —P from P~ O,
we first assume its antecedent — ¢ at line (2), and derive its
consequent —P at line (3); CP at line (4) enables us to freat this
as a proof of —Q - —P from just assumption (). On the right,
we give first the number of the assumed antecedent and second the
number of the concluded consequent. On the left, the assumption
(2) at line (3) disappears into the antecedent of the new conditional,
and we are left with (1) alone. Always, in an application of CP,
the number of assumptions falls by one in this manner, the one
omitted being called the discharged assumption.

15
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16 P (0> R)F Qs (P> R

1 () P> (0-+>R) A

2 (2) ¢ A

(3) P A

13 (40K 1,3 MPP
1,23 (SR 2.4 MPP
12 (6) PR 3,5 CP
(1) Q= (P-+R) 2.6 CP

A more complicated example. involving double use of CP: in
attempting to derive the conditional O~ (F-> Ry from
P (0 -+ R), we first assume its antecedent ¢ at hne (2), and
aim to derive its consequent P -> R: since this conseguent is also
conditional, we assume its antecedent P at line (3), and aim to
derive its consequent R. This is achieved by two steps of MPP
(lines (4) and (5)); at line (6). we treat this by CP as a proof of
P - R from assumptions (1) and (2), and we cite to the right line
(3) (the assumption of the antecedent) and line (5) (the derivation
of the consequent). In turn, we treat this at line {7y as a proof of
g = (P> R) from assumption (1) alone, and we cite to the right
line (2) (the assumption of its antccedent) and line ( 6} (the derivation
of its consequent). As before, the assumptions on the left decrease
by one at each step of CP.

11 Q=+ RF(—Q > —P)>(P->R)

I () 0= R A

2 (2)—Q-> —P A

3 ()P A

3 (4) ——P 3 DN
23 (5 ——¢ 2,4 MTT
23 (60 5 DN
1,23 (R 1,6 MPP
12 @ PR 3,7CP

1 9 (— Q= —P)> (P> R) 2,8CP
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This proof uses all five rules of derivation introduced so far, and
deserves study. Aiming to prove a complex conditional, we assume
its antecedent —  «» —F at line (2}, and try to prove ifs consequent
F s R Since this is conditional, we assume its antecedent P at
line (3}, and after a series of steps using DN, MTT, and MPF we
derive its consequent K at line (7). Two steps of CP, paralieling
the last two steps in the proof of 10, complete the job by discharging
in turn the assumptions (3} and (2).

Proofs 10 and 1! suggest a useful and important general method
for discovering the proofs of sequents with complex conditionals as
conclusion. Afier using the rule A for the assumptions given in the
sequent, we assume also the antecedent of the desired conditional
conclusion, and aim to prove its consequent; if this is also a con-
ditional, we assume its antecedent, and aim to prove its conseguent;
we repeat this procedure, until cur target becomes to prove & non-
conditional conclusion. If we can derive this from the assumpiions
we now have, the right number of CP steps, applied in reverse order,
will prove the original sequent.

1 end this section with & remark on two common fallacies, so
common that thev have received names, In accordance with rule
MPP, if a conditional is true and also its antecedent, then we can
soundly derive its consequent. If a conditional is true and also 1ts
consequent, 1s it sound to derive its antecedent? The following
example shows that it is not sound to do so: it is true that if Napoleon
was German then he was European, since all Germans are Europeans;
and it 1s true that Napoleon was European; but it is false, and so
cannot soundly be deduced from these true premisses, that Napoleon
was German. To suppose that it is sound to derive the antecedent
of a conditional from the conditional and its consequent is to
commit the fallacy of affirming the consequenr. Again, in accordance
with rule MTT, if a conditional is true and alsc the negation of its
consequent, then we can soundly derive the negation of its antecedent.
But itis not sound to derive the negation of a conditional’s consequent
from the conditional itself and the negation of its antecedent, and to
suppose that it is sound is to commit the fallacy of denying the
anteceden!. The same example may be used: it is true that if
Napoleon was German then he was European, and true also that
he was not German; but it is not true that Napoleon was not
European.
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Put schematically: the sequents

I P O, PV O and

5P g, —QF—F
are sound patterns of reasoning, as we have proved. But the
sequents

6 P> O, OF P and

TP Q —PF—Q
are not sound patterns, as we have shown by finding exomples of
propositions P and ¢ such that the assumptions of (6) and {7y turn
out true whilst their conclusions turn out false; for it is a necessary
condition of a sound pattern of argument that it shall never jead us
from assumptions that are all true to 2 false conclusion. {6} 1s in

fact the pattern of the fallacy of affirming the consequent, and (7}
that of the fallacy of denying the antecedent.

EXERCISES

I Find proofs for the following sequents, using the rules of derivation
introduced so far:

(P> (P> ) P+

by (P>R), —R, Ot —P

(O F>——0Q PFQ

d)—~Q>P —P+—0Q

() —P— —Q, OrP

(f)P>—-Q+rQ-—> —P

(g) P> QF—-0O>P

h) =P —0O+O—>P

P> 0O, 0>R-P>R

NP> (0> R P> Q> (P> R

(k) P>(Q > (R> SNt R> (P> (0> 95)

DP>QH(Q> R »(P>R)

(M) PH(P > Q) O

) PH(—(Q > R)y> —P}>(—R->» — O}
2 Show that the following sequents are unsound patterns of argument,

by finding actual propositions for P and @ such that the assumption(s)
are true and the conclusion false:
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Conjunction and Disfunction
(@P>—Q, —P+Q
by ~P — G, —QF —P
P> QO p

3 CONJUNCTION AND DISIUNCTION

Of the four sentence-forming operators on sentences mentioned in
the last section as being of importance to the logician, only two have

so far been discussed: “if . . . then .. ' and ‘not’. In the present
section, we introduce rules for argumenis involving *. .. and ...
and “either .. .or ../

Let P and O be any two propositions. Then the proposition that
bothi P and ¢ is called the conjunction of P and ¢ and is written

P& Q

Pand O are called the conjuncts of the conjunction P & ©. Similarly,
the proposition that either F or ( is called the disjunction of P and ¢
and 1s written

Pv @

P and Q are called the disjuncts of the disjunction Pv ¢. (The
symbol * v’ is intended to remind classicists of the Latin * vel * ag
opposed to ‘aut’: for P v @ is understood not to exclude the
possibility that both P and Q might be the case.)

There are two rules of derivation concerning &, the rule of
&-introduction and the rule of &-elimination; and there are two rules
concerning v, the rule of v-introduction and the rule of v-elimination.
Introduction-rules serve the purpose of enabling us to derive
conclusions containing & or v, whilst elimination-rules serve the
purpose of enabling us to use premisses containing & or v. We
discuss and exemplify these rules in turn.

&-introduction (&1)

The rule of &-introduction (&I) is exceptionally easy to master.
Given any two propositions as premisses, &I permits us to derive
their conjunction as a conclusion. The rule clearly corresponds to
a sound principle of reasoning; for if A and B are the case separately,
it is obvious that A & B must be the case. The following proofs
exemplify the use of &I.
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12P,0+P&Q

T (hHr A
2 Mo A
12 OVP&Q 1.2 &!

At line (3}, by &I we conclude the conjunction of the assumptions
(1yand (2). To the right, we cite (1) and (2} as the premisses for the
application of &I to the left we cite the pool of the assumptions on
which these premisses rest—in this case themselves.

13(P&Q)>=RFP (0> R)
1 (H(P&Q)>R A

2 (2) P A

3 (3) 0 A

23 (A P&Q 2,3 &I
1,23 (5 R 1.4 MPP
12 (6) 0= R 3,5 CP
i () P> (0> R) 2,6 CP

In attempting to prove the conditional P - (0 -» R), we assume
first its antecedent P (line (2)) and second the antecedent of its
consequent ¢ (line (3)). A step of &I at line (4) gives us the con-
junction of these assumptions, enabling us to apply MPP at line
(5) to obtain R. Two steps of CP complete the proof.

&-elimination (&E)

The rule of &-elimination (&E) is just as straightforward. Given
any conjunction as premiss, &E permits us to derive either conjunct
as a conclusion. Again, the rule is evidently sound; for if A & B is
the case, it is obvious that A separately and B separately must be
the case. Here are examples.

14P&QFP
| 1 (HP&Q A
1 (P 1 &B
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15P&QFQ
I (HhP&Q A
1 @0 1 &E

16 P (Q= R)F(P & Oy R

(P> (Q-+R) A

()P &Q A

(3P 2 &E
4 © 2 &E
(5) 0> R 1,3 MPP
(6) R 4,5 MPP

() (P& Q)R 2,6 CP

We desire the conditional conclusion (P & O} R, and so we
assume its antecedent at line (2) and aim for R. &E is used at
lines (3) and (4) to obtain the conjuncts P and U separately, which
are required for the MPP steps at lines (5) and (6). To the right,
in an application of &E, we cite the conjunction employed as a
premiss, and to the left the assumptions on which that conjunction

rests.

The rules &I and &E are frequently used together in the same
proof. For example: '

ITP&QFrQ &P

1

1
1
1

HP&Q A

@ P 1 &F
G3) o 1 &E
4 Q&P 3,2 &1

18 0> RFHP & Q)y-»(P&R)

1

2
2
2

(1) 0 R A
QP&Q A
G3) P 2 &F
@ 0 2 &E
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1.2 R 1.4 MPF
L2 (6 F&R 3,5 &I
I (DP&Q~(P&R 26CP

We desire the conditional conclusion (P & @)= (F & R); hence we
assume the antecedent P & ¢ and amm for F & K. This aim is
transiated into the aim for P and R separately, from which P & R
will follow by &I. P follows from P & ¢ by &E, and so does {0,
which can be used in conjunction with hine (1) to obtain X by MPP
(line (5)). When &1 is used at line (6}, the premisses are (3) and (5),
and these rest respectively on assumption (2} and assumptions (1}
and (2). Hence the pool of these—(1) and {2j—1s cited 10 the left.

v-introduction {(vi}

The rule of v-introduction we name vi. Given any proposition as
premiss, vl permits us to derive the disjuncuion of that proposition
and any proposition as a conclusion. Thus from P as premiss, we
may derive P v @ as a conclusion. or ¢ v P as a conclusion; and
here it makes no difierence what proposition @ is. Clearly the
conclusion will in general be much weaker than the premuss, in an
application of vI. It may, that is, be the case that either P or @
even when it is not the case that P. None the iess, the rule is accept-
able in the sense that when P is the case it must be also the case
that either P or ¢. For example, it is the case that Charles I was
beheaded. It follows that either he was beheaded or he was sent
to the electric chair, even though of course he was not sent to the
electric chair. A disjunction Pv @ is true if ar least one of its
disjuncts is true, so.that rule vI cannot lead from a true premiss to
a false conclusion (though it may lead to a dull one}.

v-elimination {vE)

The rule of v-elimination (vE} is rather more complex. | first state
it, then explain and justify it, and finally exemplify botb it and vI.
Let A, B, and C be any three propositions, and suppose (¢) that
we are given that A v B, (b) that from A as an assumption we can
derive C as conclusion, (¢} that from B as an assumption we can
derive C as conclusion ; then vE permits us to draw C as a conclusion
from any assumptions on which A v B rests, together with any
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assumptions (apart from A itself) on which C rests in jis derivation
from A and any assumptions (apart from B itself) on which C resis
in its derivation from B. Thus the typical situation for a step of vE
1s as follows: we have 2 disjunction A v B as a premiss, and wish to
derive a certain conclusion C; we aim first to derive C from the
first disjunct A, and second to derive C from the second digjunct B,
When these phases of the argument are completed, we have the
situation described in (), (b), and (c) above, and can apply VE to
obtain the conclusion C direct from A vB. On the right, we
unfortunately need to cite five lines - (1) the Line where the disiunction
A v B appears; (i) the line where A is assumed; (1} the line where
C is derived from A; (iv} the line where B is assumed; (v} the line
where C is derived from B. And on the left, the conclusion may
rest on rather a complex pool of assumptions, derived from three
sources: (i) any assumptions on which A v B rests; (ii) any assump-
tions on which C rests in its derivation from A, though not A
iself; (iii) any assumptions on which C rests in its derivation from
B, though not B itself, ,

Though involved to state exactly, the rule vE corresponds o an
entirely natural principie of reasoning. Suppose it is the case that
either A or B, i.e. that one of A or B is true; and suppose that on the
assumption A, we can show C to be the case, i.e. that if A holds C
holds; suppose also that on the assumption B, we can still show that
C holds, i.e. that if B holds C aiso holds; then C holds either way.,
For example: you agree that either it is raining or it is fine (A v B);
given that it is raining, then it is not fit to go for a walk (from A
we derive C}; given that it is fine, then it must be very hot, so that
again it is not fit to go for a walk (from B we derive C). Hence

“either way it is not fit to go for a walk (we conclude C),

19 PvOFOvVP

MHPvg A

(2 P A
BGyovrep 2vi

(ORY A
5)QvP 4vi
6)QvP 1,2345VE

L ST - T S I
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On line (1), we assume P v {; since this is a disjunction, we aim (o
derive the conclusion @ v 7 from the first disjunct P, assumed at
line (2), and also from the second disjunct ¢, assumed at line (4).
This is achieved on lines (3} and (5) by steps of vi which should be
obvious. At line (6), we conclude Qv F from assumption (1)
directly, since it follows from each disjunct separately. Omn the right,
we cite line (1) (the disjunction), line (2} (assumption of first disjunct),
line (3) (derivation of conclusior from that disjumct), hne {4)
(assumption of second disjunct), and line (5) {derivation of con-
clusion from that disjunct). To the left, we cite any assumptions
on which the disjunction rests (here (1} rests on itself, which is
therefore cited), together with any assumptions used to derive the
conclusion from the disjuncts apart from the disjuncts themselves
(inspection of the citations to the left of line (3) and (5) shows that
there are none such). This proof should reveal the importance of
keeping accurate assumption-records on the left of proofs: lines (3)
and (5) here give indeed the right conclusion @ v 7, but not from
the right assumption, which is (1}; this is achieved only at line (6},
which differs from lines (3} and (5} in the annotation on the left.

20 Q0 RF(PVQ)>(PVR)

I (LO—=R A
2 (QPVO A

3 ()P A

3 @WPVvR 3 vl

5 (50 A

1,5 (6) R 1,5’ MPP
1,5 (MPVR 6 vl

1,2 (8)PVR 2,3,4,5,7 vE

I O PvO)y»~(PVYR) 28CP

The  desired conclusion here is conditional; s¢ we assume its
antecedent P v Q (line (2)), and aim to derive P v R; this assumption
is a disjunction, so we assume each disjunct in turn (lines (3} and (5))
and derive the conclusion P v R from each (lines (4) and (7)). Hence

the citation on the right at line (8) is 2,3,4,5,7. The assumptions at
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Conjunction and Disjunction
line (8) are those on which the disjunction Pv ¢ rests (itself, (2)),
together with any used to obtain Pv R from (3) apart from (3}
itself (none, as line (4) reveals) and any used to obtain P v & from
(5) apart from (5) itself (namely (1), as line (7) reveals). A step of
CP compiletes the proof from (1) of the desired conditional.

2 PV(QVRIFQV(PVER)
I (L Pv(QVvR A

2 QP A

2 (3)PVR 2 vi
2 (4 Ov(PVR) 3l
5 (5 OvE A

6 (6)0 A

& (N OVv(PVR) 6Vl
8 (8) R A

& (B PVvER g vl
8 (10) gv(PVR) 9vI

L

(1) @V(PVR) 567810 VE
(12) Qv(PVR) 124511VE

S

This proof deserves detailed study, in the use both of vI and of VE.
Careful attention to bracketing is required. The assumption 1s a
disjunction, the second of whose disjuncts is a disjunction itself,
The proof falls into two distinct parts, lines (2)(4) and lines
(5)-(11): the first part establishes the desired conclusion from the
first disjunct of the original disjunction (line (4)), and the second
part establishes the same conclusion from the second disjunct
(Iine (11)). This should explain the final step of VE at line (12).
The second part (lines (5)(11)), which begins with a disjunctive
assumption, also falls into two sub-parts and involves a subsidiary
step of VE at line (11). Lines (6)~(7) obtain the conclusion from the
first disjunct Q of (5), and lines (8)(10) obtain the conclusion
from its second disjunct R. Hence the final conclusion is obtained
no less than five times in the proof, from different assumptions each
time.
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Reductio ad absurdum (RAA)

The last rule to be introduced at this stage 1s 1n many ways the most
powerful and the most useful; it is easy to understand, though a
iittie difficult to state precisely. We shall call it the rule of reductic
ad absurdum (RAAS. First, we define a contradiction. A contradiction
is & conjunction the second conjunct of which is the negation of the
firstcomunct thus P & —F, R & — R, (P O)y & (P Q) areall
contradictions. Now suppose that from an assumption A, together
perhaps with other assumptions, we can derive 2 contradiction as a
conclusion; then RAA permits us to derive —A as & conclusion
from those other assumptions (if anv). This rule rests on the
natural principle that, if a contradiction can be deduced from a
proposition A, A cannot be true, so that we are entitled to affirm
its negation — A.

Here are examples.
2P QG P —QF P
1 (1Y P ¢ A
Z (H P —Q A

3 (3) P A

13 4o 1.3 MPP
23 (5 —0 2,3 MPP
1,23 (6) 0 & —Q 4.5 &l
1.2 (7)) —P 3,6 RAA

This is a typical example of the use of RAA. Aiming at the con-
clusion —P, we assume (line (3)) P and hope to derive from it a
contradiction; for, if P leads to a contradiction, we can conclude
—P by RAA. We obtain the contradiction @ & — @ at line (6), and
so conclude —P at line (7). On the right, we cite the assumption
which we are blaming for the contradiction—the one whose negation
we conclude in the RAA step, here (3)—and the contradiction
itself, here (6). On the left, as in a CP step, the number of assump-
tions naturally falls by one, there being omitted the one which we
blame for the contradiction.
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Conjunction and Disjunction
23 P —Pb —P
I (P —P A

2 P A
1,2 (3) —P . 1,2 MPP
1,2 (HP&—P 2,3 &l
1 (5) —P 2,4 RAA

Again desiring —F, we assume P (line (2)) and obtain & contradiction
(line (4)). Given (1), therefore, we conclude —P by RAA. The
sequent proved 1s striking, and perhaps unexpected—given that if
& proposition 1s the case then so is its negation, we can conclude that
its negation is true. This is the first surprising result to be established
by our rules, but there will be more.

The rule RAA is particulariy useful when we wish to derive
negative conclusions. It suggests that, instead of attempting 2
direct proof, we should assume the corresponding affirmative
proposition and aim to derive a contradiction, thus indirectly
establishing the negative. It can also be used, however, to establish
affirmatives themselves, via DN. If we want to derive A, we may
assume —A and obtain a contradiction. Hence by RAA we can
conclude ——A (the negation of what we assumed) and so by DN
we obtain A. It is a good general tip for proof-discovery that, when
direct attempts fail, often an RAA proof will succeed.

So far, ten rules of derivation have been introduced : we shall need
no new ones until Chapter 3.

EXERCISES
1 Find proofs for the following sequents:
(@) Pt Q> (P &Q)
BDPE(OERQ &P &R
ODP>N&EP>»RVIP>(Q &R
(d)Q+rPv
P&EQLPVY
(NHP>+>R&@Z>RIHPv >R
@P>»Q, R>»>Sr(PER>(Q&S)
(W P> Q, R>SHPVR > (QVS)
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P> (Q&R)F(P> Q) &P > R)
)y —FP->P+P

2 Show that the following sequents are unsound, by finding actual
propositions for P and  such that the assumption is troe and the
conclusion false:

(b PrP&Q
(BYFvgGrP

(e} PYQVYP&Q
d)P>QrP&Q

4 THE BICONDITIONAL
There is a sentence-forming operator on sentences, of considerable
importance to the logician though of rare occurrence in ordinary
speech, which we have not so far introduced. Thisis ‘. . . if and only
if ... We study it in the present section.
To begin with, let us consider the differences between “ if . . . then
"and ‘only if ... then...’. Compare the following two
propositions:
(1) if it snows it turns colder:
(2) only if it snows it turns colder.

(1) affirms that its snowing is sufficient for it to turn colder, whilst
(2) affirms that its snowing is necessary for it to turn colder, that if
1t is to turn colder it must snow. Hence we shall say that, whenever
it is the case that if P then @, P is a sufficient condition for 0.
and, whenever it is the case that only if P then ¢, Pisa necessary
condition for 0. To make this fundamental distinction clearer, let us
compare

(3) if you hit the glass with a hammer, you will break it;
(4) only if you hit the glass with a hammer will you break it.
(3) is very likely true; (4) is very likely false, since there are other
ways of breaking the glass than by wielding 2 hammer. On the other
hand, of the two propositions
(5) if you use a screwdriver, you will unscrew that very tight
screw;
(6) only if you use a screwdriver will you unscrew that very
tight screw,
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(5} mav very well be false (you may use the screwdriver and still not
unscrew the screw), and (6} true, since there may be no other way of
turning the screw than by wielding a screwdriver. Hitting with a
hammer is (probably} a sufficient but not a necessary conditiorn for
breaking z glass; using a screwdriver 1s {possibly) a necessary but
not a sufficient condition for turning a tight screw.

In scientific and in mathematical reasoning. and conseguently in
logic, we are often interested in a condition being boik sufficient and
necessary. F will be a sufficient and necessary condition for @ in
just the case that ¢ holds if and only if F holds. Hence our interest
in ‘.. .if and onlv if . ... It may seem, therefore, that we require
a special symbol for “only if . . . then .. .”; but that this is not so
‘may be seen as follows.

Suppose that only if P then ¢ ; then P is a necessary condition for
0, that is, for £ to be the case P must be the case; hence if @ is the
case, so 1s P. For example, suppose, as before, that using & screw-
driver is a necessary condition for turning the screw; then if the
screw is turned, a screwdriver has been used. In short, given that
only if P then @, we can infer that if Q then P. Conversely, suppose
that if ¢ then P; then for ¢ to be the case P must be the case, for if
© 1s the case and P not the case it cannot hold that if ¢ then P;
hence P is a necessary condition for ¢, that is, only if P then .
These two arguments suggest that to affirm only if P then @ is to
affirm if Q then P. Hence to express 9ymbohcal y ‘only if P then
Q’ we may use ‘- and simply write

g~ P.

To affirm, therefore, that Q if and only if P is to affirm that if P
then Q and only if P then @, which is to affirm that if P then ¢
and if @ then P; or, ini symbols,

(P> Q) &(Q—>P). .
But, rather than use this complex expression, we may conveniently
adopt a double arrow and write as an abbreviation
Pty Q.
(This symbol helps to emphasize the mutuality of the relationship
between P and Q.) We call the proposition P ~—» @ the biconditional

of Pand Q.
What are the properties of the biconditional in argument? We
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could lay down rules of derivation for this operator, as we have done
for the four operators of the previous two sections. But in fact the
properties of * - " follow readily from those of “ & "and ‘=", in
terms of which we have just defined the biconditional. For exampile:

U Pt OF Qe P
(1) Pt O A

1

P P00y &(Q=PF) 1

1 () P>0 2 &E
1 4 g->P 2 &E
P SO =PY& P> 0) 43 &
! 5

(6) @ s P

Here the step from (1) to (2) is justified by our taking ‘ P egws O
as an abbreviation for “(P-» Q) & (0 P}" at {2} we merely
expand what we have assumed at (1). Similarly, but in reverse, the
step from (5) to (6) is justified: for (6) is merely an abbreviation for
the conclusion (5). However, we need to ratify such steps more
precisely, and to this end we introduce the following formal
definition of the biconditional:

Df < A B=(A->B)&(B-> A

This definition is to be understood 2s a very condensed way of
saying: given any two sentences A and B, we may replace in a proof
the sentence A -« B by the sentence (A - B) & (B - A}, and vice
versa. When this definition is applied, we shall cite * Df. -’ on
the right. Lines (2) and (6) of the last proof should in fact be so
marked.

The next few proofs exemplify the use of this definition.

25 P, P<> 0t Q

] (1) P A

2 () Pe—> Q A

2 (3) (P> Q) & (0~ P) 2 Df <>
2 @) P> Q 3 &E

1,2 5) Q 1,4 MPP
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26 Pt O, O~ REFP g R

1
2

1

!

1

2

2

2

9
1,9
1,2,9
1,2
13
2,13
1,2,13
1,2

1,2
1.2

(1) P e O

(2) g =R

Q)P Q) &(QP)
(4) P> 0

(5) 0P

(6) (O - R) & (R O)
() =R

(&) K- Q@

NP

(10} ¢

(11) R

(12) P+ R

(13) R

(14) ¢

(15) P

(16) R-» P

(17) (P + R) & (R + P)
(18) P <—> R

The Biconditional

A

A

1 Df. >
3 &E

3 &E

2 Df. s
6 &E

6 &E

A

4,9 MPP
7,10 MPP
5,11 CP
A

8,13 MPP
5.14 MPP
13,15 CP
12,16 &1
17 Df. <

To derive P—<—> R by Df < we necd to derive (P~ R) &

(R - P), and we aim at each conjunct separately.

The first eight

lines of the proof merely itemize the information in the assumptions,
by applying Df. < and &E. This information (lines (4), (5),
(7, (8)) is then used in a straightforward manner to derive the two
required conjuncts (lines (9)~(12) and (13)~(16)).

2T (P& Q) PF P> (
1 (H (P& Q)—e—> P

1 QP&EQ>+P) &P (P& Q)

1 P+ P&QO
4 (4P
14 HYP&Q

A

1 Df. s
2 &E

A

3,4 MPP
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The Propositional Calculus 1
1.4 (6) O 5 &E
7 P20 46CP

By Df -, (1) is an abbreviation for (2), if we take A to be the
sentence ‘ P & ¢ " and B to be the sentence * P

B PEP <> NEP&O

1 (D P &P s () A

1 (2 PEWP» Q) &(Q~»P)) 1 Df <>
1 3y F 2 &E

I (BP0 &GP 2 &F

1 (5P Q 4 &E

I (60 3,5 MPP
I (P& Q 3,6 &1

In the proofs preceding this, when Df. -« was applied, it was
applied to a sentence as 2 whole, i.e. the sentence to which it was
applied was of the form A -« B; but this is not essential: here in
fact at tine (2) it is applied to the second conjunct of the proposition
at line (1}.

Although Df. —>- is like the ten rules of derivation introduced so
far, in that it justifies transitions in a proof, it should not be thought
of as another rule on a par with the rest. Its role in proofs is io
enable us to take advantage of a piece of symbolic shorthand,
rather than {o enable us genuinely t¢ derive conclusions from
premisses. It happens that, for certain ends, we are interested in
compiex propositions such as (P -+ Q) & (@ = P), and to faciiitate
our study of them we agree to abbreviate our expressions for them
to sentences such as * P——» Q°. This is a guide to the eve, a sop
thrown to human weakness: were we brave enough, in place of
27 above, for example, we might merely prove

(NP&END>P)&P~PEQ)FP> O
but the expression we have used discloses a pattern which we might
miss in the expression of (7). Given, therefore, that we wish to take
advantage of this abbreviation in proofs, we need a device for
transforming sentences containing ‘ - " into sentences lacking it,
and a reverse device for transforming sentences of the right form
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The Biconditional

lacking '~ into sentences containing it: that is exactly what
Df. <= provides. To put the point in a slightly different way, any
logical properties which ‘-~ ' may seem to have are merely
properties of * & " and ‘= in symbolic disguise.

A definition such as DY <= may be called a stipulative definition,
in that it stipulates or laye down the meaning of the symbol © s’
in terms of symbols ‘= ' and * & * whose meaning is known from
the rules governing their depioyment in proofs. To say that a
definition 1s stipulative is not to say that it is arbitrary (though the
actual symbol ‘—->" chosen is in a sense arbitrarily chosen).
Indeed, I carefully prepared the ground for the definition by arguing
that what we in fact understood by the proposition that ¢ if and
only if P was that if P then ¢ and if ¢ then P. But formallv the
definition 1s stipulative in that it announces that a sign is fo be raken
in a certain way.

EXERCISES

1 Using Df-<» in conjunction with the rules of derivation of sections
2 and 3, find proofs for the following sequents:

() O, P> QFP

G P> 0, @0>PrP<s>
()P Ot P> —(

(d) — P> — Ot P> Q

() Pv Q)< Pt Q> P

(NP<>» —(Q, §<p» —RFP=>»R

s

2 Just as ‘... if and only if .. ." can be defined in terms of “if ...
then... and ‘.. .and ..., so “unless. . ., then ... can be defined
in terms of ‘if ... then ... and ‘not’. For to affirm that unless P
then ( is to affirm that if not P then @ (justify this by taking cases).
Let us, therefore, stipulate

Df+»  AsB= —A->B.
Using Df. # in a way paraliel to Df. <=, find proofs for the following
sequents:
()P QFQO %P
BGYP+Q, P+ REPx(Q&R)
(P« Q, R*x —QFPx*R
(dyP=P+P
(¢ —Pe R —Q+«R PvQFR
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5 FURTHER PROOFS: RESUME OF RULES

We now exemplify the use of our rules of derivation by some more
advanced proofs. The sequents proved are themselves worth
studying, as exhibiting some of the more basic formal properties of
the operators concerned; the formal work deserves atiention too,
since it frequently illustrates & technigque which the student should
master as an aid to his own discovery of proofs. After many proofs
I add notes which pick out interesting features and try to indicate
how the proofs are discovered. There are not, it should be re-
membered, precise rules for proof-discovery; hints can be given,
but actual practice is all-important. (To this end. the student might
try to rediscover proofs of sequents i preceding sections.) At the
end of the section, I add for reference purposes a statement of the
ruies introduced so far.

29 PHP
1 (HP A

Mo shorter sequent than this can be proved, and its proof is the
shortest possible proof: yet it is worth close attention. Line (1)
affirms that, given (1), P follows; what is (1}?%—the proposition P
itself. That is, given P, we may conclude that P, which is the sequent
to be proved. Is this really sound? It is often thought that to infer
P from P is unsound, on the grounds that the argument is circular,
but this is a misunderstanding; certainly the argument is circular
(in the popular sense), but a circular argument is entirely sound
(though extremely dull). Given that it is raining, the safest possible
conclusion is that it is raining. If 1 infer a proposition from itself,
1 do not err in reasoning, though I do not advance in information
either. From this standpoint, the rule of assumptions is precisely
based on the principle of the soundness of a circular argument; for
the rule of assumptions affirms that, given a certain proposition, we
can at least infer that proposition.

Let A and B be two propositions such that we can prove both the
sequent A F B and the sequent BF A; then we say that A and B
are interderivable, and we write the fact thus;

A B,
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Résumé of Rules

using 2 suggestive symbol. For example, 2 comparison of seguents
13 and 16 (Section 3) reveals that (P & OY-» R and P+ (J -+ R}
are interderivable, so that we may write in summary:

W FLELO)» R4 FP> (@R

In establishing an interderivability result, the work naturally falls
into two halves. Thus:

3L P&MPVOYIP
(@) P & (Pv Q)+ P
1 (DP&PFPVO A

1 ()P 1 &E
BYPFP &PV Q)

1 ()P A

1 (QPVO 1 vl

I (HYP&PVQ 1.2&]

in proving (31(b)) that P & (P v Q) follows from F, we prove that
each conjunct follows separately: that P follows from P is in fact
given at line (1) (compare 29 above and the note following).

32 Pv(P& Q)P
(@ Pv(P&Q)FP
1 (DPV(P&Q) A

2 ()P A

3 P&Q A

3 4P 3 &E

1 (5P 1,2,2,3,4 VE
(B)PHP v (P & Q)

1 ()P A

1 QPv(P&Q) 1vI

In 32(a), to show that P follows from the disjunction Pv (P & @),
we need to show that it follows from each disjunct in turn in
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order to apply vE. That P foliows from £ 1s given by hine (2)
{compare again 29), and that it foliows from P & O is proved by
&E at line (4). This should explain the double citation of ‘2" at
line (5) on the right: the first * 2 * signifies the assumption of the first
disjunct P at that line, and the second ‘2’ signifies that the con-
clusion P is derived from that assumption at the same line.

33 PvPA+P
() PvPEP
P (L FvP A
2 P A
I &F 12,222 vE
by PHFvP
I (hPF A

I (Y PvP 1wl

33(a) line (3) reveals a limiting case of the use of vE. To derive P
from P v P, by vE we need to show that P follows from each disjunct
in turn; but the disjuncts are the same, P itself, so that the whole
work is done by line (2): hence the four citations of ‘2° to the
right at line (3).

4P —-PEOQOF—Q

1 M P A

2 (2 —(P&Q) A

3 3) 0 A

13 @P&Q 1,3 &I
123 GO)(P& Q)& —(P& Q) 2.4 &I
1,2 (6) ¢ 3,5 RAA

To derive — @, we proceed indirectly and assume @, hoping to
obtain a contradiction; this is achieved at line (5), whence RAA
yields the desired sequent. The principle of reasoning associated
with 34 has the medieval name modus ponendo tollens: if P is the
case, and it is not the case that both P and @, then it is not the case
that Q.
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Résumé of Rules

385 P QA —(P& —0)
@F+Qr—(P&—0)

1 (1) P> Q A

2 (P& —Q A

2 (3) P 2 &E

2 (4) —0 2 &E

1,2 (3¢ 1,3 MPP

12 6 0&—0 4,5 &1

1 (7) —(P & — Q) 2,6 RAA
by —(P&—~QNtP>Q

I (1) —(P & — Q) A

2 Q)P A

3 Gy -9 A

23 (HP&—Q 2.3 &I

123 GOV(P&—Q) & —(P& — Q) 1.4 &I

1,2 (6) ——0Q 3,5 RAA

12 (Mo 6 DN

1 (8) P> 0 2,7 CP

35(a): another indirect proof—we assume (line (2)) P & — ¢ and
aim for a contradiction. Lines (3) and (4) unpack by &E the
information of line (2), and the desired contradiction is almost
immediate (line (6)). 36(b) is a little more complex. Aiming to
prove P=- ¢, we assume P (line (2)) and take ¢ as a subsidiary
target, relying on CP to redress the balance at the last step. There
seems, to be no direct way of deriving @ from (1) and (2), so we
assume — Q (line (3)) and aim for a contradiction. By &I, assump-
tions (2) and (3) contradict assumption (1), as we establish at line
(5). By RAA, this yields —— ¢ from (1) and (2), and hence ¢
(line (8)) by DN.

36 Pv Q4 —(—P & — Q)

(@PvQp—~(—P&—-Q)
1 (HPvQ A
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2 (2) —P & ~Q A

ki (3) P A

2 4y —P 2 &E

23 (5 P& —P , 3,4 &I

3 (6) —(—P & — Q) 2,5 RAA

7 (N o A

2 (8 -0 2 &F

27 (9 Q& -0 7.8 &I

7T (10) — (=P & Q) ' 2,9 RAA

T (1) (=P & —(Q) 1,3,6,7,10 vE
(b) ~ (=P & —Q)yFPvQ

I (1) (=P & — Q) A

2 (2) —(Pv Q) A

3 (3) P A

3 (4y Fv @ 3 vl

23 (5HPVO) & —(PV Q) 2.4 &1

2 (6) —P 3.5 RAA

7 (1) O A

7 (&) Pv O 7 vl

27 (9 (PVvO)& —(PVO) 2.8 &I

210 -0 7.9 RAA

2 (1) —P&—¢Q 6,10 &I

12 I(—P&—Q)& —(—P & - Q) 1,11 &I

I (a3 ——(Pv Q) 2,12 RAA

i (14 PvQ 13 DN

Both 36(a) and 36(b) are instructive proofs, and merit close scrutiny.
The basic idea of 36(a) is proof by vE. Given a disjunctive assump-
tion, we assume (line (3)) the first disjunct and aim for the conclusion,
and assume {line (7)) the second disjunct and aim for the same
conclusion. In each case, the conclusion is obtained by RAA, so
that we assume once and for all (line (2)) —P & — @ whose negation
we wish to derive. Lines (3)-(6) achieve the first objective, lines
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Késumé of Rules

(7310} the second. The basic idea of 36(b) is proof by RAA. We
assume (line (2}} the negation of the desired conclusion, and aim for
& contradiction. Clearly what contradicts assumption (1} is
—F & — Q. so that the objective becomes to derive —F and — (¢
separately from (2). To derive —F, we assume P (line (3)), and
obtain a contradiction (line (5)); hence — P follows from (2} (line
(6)). In a paraliel way, — ¢ also follows from (2) (line (10)). We
thus achieve the desired contradiction at line (12). It is worth
noting that at fine (11} of this proof we have actually proved the
sequent —(Pv Q)b —P & — O (compare Exercise 1 (f} at the end
of the section}.

The ten rules we have used hitherto enable us to prove interesting,
and in certain cases unobvious, results concerning the interrelations
of our sentence-forming operators on semtences. Yet they are all
rules which after reflection we are inclined to accept as corresponding
to sound and obvious principles of reasoning: at least, from true
premisses we shall not be led by them to false conclusions. It
should be clear by now that any insights we have so far obtained
into the proper codification of arguments are mainly due to the
adoption of a special logical notation and of rules the application
of which can be mechanically checked. Indeed, if someone queries
our conclusions, we can present him with the proofs and ask him
to state exactly which step he regards as invalid and why. In this
respect, the situation is like that in arithmetic: it is idle merely to
disagree with a certain calculation; vou should say where the
mistake has been made, and why you consider it to be such. There
is a difference, however: calculations can be performed, as well as
checked, mechanically, whilst we so far know of no mechanical
way of generating proofs-—though, once discovered, a machine
could certify them as valid.

SUMMARY OF RULES OF DERIVATION

I Rule of Assumptions (A)
Any proposition may be introduced at any stage of a proof. We
write to the left the number of the line itself.

2 Modus Ponendo Ponens (MPP)
Given A and A - B, we may derive B as conclusion. B depends
on any assumptions on which either A or A - B depends.
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The Propositional Calculus 1

3 Modus Tollendo Tollens (MTT)
Given —B and A - B, we may derive — A as conclusion. —A
depends on any assumptions on which either —B or A - B depends:

4 Double Negation {DN)

Given A, we may derive — — A as conclusion, and vice versa. In
either case, the conclusion depends on the same assumptions as the
premiss.

5 Conditional Proof (CP)
Given a proof of B from A as assumption, we may derive A =B
as conclusion on the remaining assumptions (if any).

6 &-Introduction (&1)
Given A and B, we may derive A & B as conclusion. A & B
depends on any assumptions on which either A or B depends.

7 &-Eliminarion (&E)

Given A & B, we may derive either A or B separately. In either
case, the conclusion depends on the same assumptions as the
premiss.

& v-Introduction (V1)

Given either A or B separately, we may derive Av B as con-
clusion. In either case, the conclusion depends on the same
assumptions as the premiss.

S v-Elimination (VE)

Given A'v B, together with a proof of C from A as assumption
and a proof of C from B as assumption, we may derive C as con-
clusion. C depends on any assumptions on which A v B depends
or on which C depends in its derivation from A (apart from A} or
on which C depends in its derivation from B {apart from B).

10 Reductio ad Absurdum (RAA) ;
Given a proof of B & —B from A as assumption, we may derive
— A as conclusion on the remaining assumptions (if any).

Note: The biconditional-sign ¢~ is introduced by the following
definition:

Df. <> A-<>B=(A>B)& (B A)
This definition permits the replacement of A < B appearing in a
conclusion by ( A - B) & (B -+ A), and vice versa.

40



Résumé of Rules

EXERCISE

f

Find proofs for the following sequents:
PvQ PvQ

BYP&EFP 4P
OP&QVRIHHP & VP &R
(DPV(QER PV &(PVER)
@FP &G —(F > —Q)

)y ~FPvdr —P & —Q

(&) —(P& D4 —Pv —Q
WPEJH —(—Pv—0)
(HPs» O —FvQ

Jy—P> QFrPv(Q
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CHAPTER 2

The Propositional Calculus 2

INTRODUCTIONR

In the previous chapter we gradually learned what may be described
as & formal language. 3 language designed for the study of certain
patterns of argument in something of the way in which the language
of elementary mathematics is designed for the study of certain
numerical operations (addition, subtraction, etc.). This language is
often callied, for reasons which should be obvicus, the propositional
calculus {also sometimes the senfenriol calculus). In the present
chapter, we study it at a more theoretical level, in order to gain a
clearer insight into 1ts properties and its power. Among the
guestions we shall raise are the following three. (i) It commonly
happens in mathematics that a result, once proved, can be utihzed
without re-proof in obtaining new results—mathematcs 18 pro-
gressive in just this sense, as any student of Euchdean geometry
knows. Are there anv analogous devices whereby we can use a
sequent already proved to facilitate the discovery of proofs for other
sequents? An affirmative answer i1s given in Section 2. (ii} However
confident on intuitive grounds we may be that our rules of derivation
are safe, is there nevertheless any way of showing that they are
safe, showing that they will not vield sequents which are in fact
mvalid? A way is found in Sections 3 and 4. (iii) We have so far
introduced ten rules of derivation for operating the symbols of the
language: are these enough, or do we require more? Section 5§
shows that our rules form in a certain sense a complere set, and that
ne more are needed. The answers to these and related questions
afford a deepened understanding of the nature of the propositional
calculus.

! FORMATION RULES

The propositional calculus is, I have said, a kind of language, and
as such it has a grammar or, more particularly, a syniax. We have
taken this syntax for granted in our fairly easy-going approach so far;
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Formation Rules

but we cannot go much further without a2 more scrupulous account of
the structure of the language itself. In particular, we have taken for
granted what was understood by a sentence in the symbolism: it is
part of our task as logicians to make this notion precise, and we
devote this section to the job by introducing a rather long series of
definitions.

First, I define a bracker. A bracket is one of the marls:

oLy

and | call the first kind of mark a lefi-hand bracket and the second a
right-hand bracket. This definition, which should be readily under-
stood, 1s an osiensive definition, so-called because 1 show or exhibis
what a bracket is rather than use other words to define one. (We
could avoid ostensive definition: 1 might say that a bracket ic an
arc of a circle, with one end point placed vertically above the other
end point.)

Second, I define a Jogical connective, ofien just called a connective.
A logical connective is one of the marks:

Gt &V e

This is also an ostensive defimtion, which formally introduces the
symbols emplioyed in the last chapter for sentence-forming operators
on sentences.

Third, I define a (propositional} variable. A propositional variable
is one of the marks:

CPLCQN R, L

This is again an ostensive definition, but importantly different from
the earlier two. There are just two kinds of mark which are called
brackets, and just five which are called connectives; but the *...
in the definition of a variable is intended to indicate that there is an
indefinitely large number of distinct such. Human limitations being
what they are, we have room and time to list only a finite number;
so we add ‘.. .. Since in practice we rarely need more than four
distinct variables, there is no need to specify how the list would
continue. But it is well to remember that the number of variables
has no theoretical upper Iimit, that if we ever need a new one we
are entitled to comstruct it (say by adding dashes and introducing
<Pt ¢ R, etc., into our list).

Fourth, I define a symbol (of the propositional calculus) as either a
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The Propositional Calculus 2

bracket or a logical connective or ¢ propositional variable. Hence anv
of the above marks 15 2 symbol.

Fifth, I define a formuda (of the propositional caleulvsy as any
sequence of symbols. This definition needs a litile explanation; in
virtue of it,

() " PU(—&Q s’
(2)y “(Pv —Py’

are both formulae, since both are sequences of symbols: (2) for
example is the seguence consisting of a lefi-hand bracket, followed
by an occurrence of the variable * P, followed by the conneciive
‘v, followed by the conpective ‘—', followed by 2 second occurrence
of the variable “ P, followed by 2 right-hand bracket. But

3y *v P’
&->=~
(>
R
)

is not a formula, since it is not a seguence of symbols, but rather a
jumble of them. A sequence requires order, which (1) and (2)
possess but (3) lacks. Our normal convention for writing sequences
of symbols is that they shall appear, not spaced too far apart, in
the order from left to right. This is 2 contemporary European
convention, which the reader will be relieved to see T am following
in this book.

Of the whole class of formulae, some, like (1) above, might be
loosely called meaningless or gibberish, while others, like (2), make
sense and can be understood. It is only, of course, the second group
that we want to use in our formal work, so that we must single them
out, if we can, by a precise definition. Out of the totality of formulae,
therefore, we define the sub-class of well-formed formulae, by a some-
what complex definition, which has seven clauses. To save space, we
abbreviate ‘ well-formed formula® to ‘ wff* (plural © wffs ), both
here and hereafter.

() any propositional variable is a2 wif;

(b) any wif preceded by ‘ — "’ is a2 wif:

(¢) any wif followed by ‘- followed by any wff, the whole
enclosed in brackets, is a wif;
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(d) like (c), with * &~ replacing * = "

(e} like (¢}, with * v~ replacing * - *;

(f) like (c), with ‘=" replacing * - :

(g) if a formula is not 2 wil in virtue of clanses (e)-{f}. then
itis not a wil.

The best way to see that these clauses do successfully define a wif
is to consider examples. We show that

@) (P> Q)v— Q)< (——P & Q)"

1s & wif, as we wish it to be, in view of the definition. First, in virtue
of clause {(a).
13 P ‘,s 3 Q k]
are wils, since by (a) all variables are wffs. By (b), the result of
prefixing * —  to 2 wif gives 2 wif: hence
£ _“P *7 & _ Q §

are wifs. But if * —PF 7 is a wii, as we have shown it to be, then by
clause (b) again

& -—*-—"P 5
is a wif. (We could go on applying (b) to show that * —— — P,
‘————P", etc., were all wfls.) Now since ‘ ——P* and ‘ Q"

have been shown to be wffs, by clause (d) the result of placing ‘ & °
between them and enclosing the whole in brackets yields a further
wif: hence

(5) ‘“(=—=P & Q)’
1s a wil. Again, by (c), since ‘ P’ and ‘ O’ are wifs, so is
(P>Q).
Using (e}, given that ‘ (P Q) and ‘ — @ are wffs, we have that
©) (P> v—-0Q)

is a wif. Finally, using (f), given that (6) and (5) are wifs, we see
that (4) itself is a wif: for (4) results from writing (6), followed by
‘', followed by (5), the whole enclosed in brackets. Our
definition has enabled us to show, step by step beginning from the
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The Propositional Caleulus 2

smallest parts (the variables}, that a complex formula such as (6} is
well-formed. A careful study of the example should make clear how
the iechnique can be generally applied.

On the other hand, it is obvious {though not too easy to prove)
that no such applications of clauses (g} to (f) could ever show that
(1} above—the example of °gibberish —is a wil. Hence, by
clause (g), the ruling-out or exrremal clause of the definition, (1) is
no! o wif. The force of clauses (a)-{g}, taken together, is to divide
the totality of formulae into two camps: those that can be obtained
by applications of clauses (a}-{f}, which are wiffs by the defimtion,
and those that cannot be so obtained, which by (g} of the definition
are not wifs,

Arn important aspect of this definution 15 the nsistence, in clauses
{c)~(f), on mtroducing surrounding brackers. This Is necessary
because of ambiguities that would result from their omission. For
example, we do not wish to admit as well-formed the formula
‘P& Q- R’, because as it stands this might mean either “(F &
(O -+ R))" (expressing a comjunction with a conditional second
conjunct) or ‘(P & Q) R}’ (expressing a conditional with a
conjunction for antecedent). Our emphasis on bracket-insertion
removes risks of this kind. (On the other hand, we need no such
insertion of brackets in clause (b), and the student may profitably
speculate as to why not.)

In some ways, however, the bracketing conventions imposed by
the definition of a wifl, though theoretically correct, are in practice
a nuisance. In fact, as a result of them the vast majority of formulae
exhibited in Chapter 1 are unfortunately not well-formed. They
lacked the requisite outer pair of brackets. We accepted there, for
example, * —P - O °, whilst by clause (¢} we requite *{(—P - Q).
But our instinct was sound, if our precision was faulty: human
beings cannot stand very much proliferation of brackets. A natural
practical convention to adopt is to permit the dropping of outermost
brackets, since evidently no ambiguity can result. And there is
another useful practical way in which we can cut down brackets
safely, as follows.

Let us rank the connectives in a certain order: let us agree that
— " “ties more closely’ than ‘& or ‘v’, that* & and ‘v’ ‘tie
more closely ’ than ‘-»’, and that ‘=’ ‘ ties more closely ’ than
‘¢, Thus we can safely write in practice ‘P & Q- R’ for
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“((F & @) R)’, dropping the outer brackets by our previous
convention, and dropping the inner ones by our present one: * & °,
tying more ciosely than “ - " stealsthe * @ in“ P & Q- R fora
second conjunct, rather than leaving it as the antecedent of
“ Q- R°. If we require the latter interpretation, we need to write
‘P &(U- R)’. Using these conveniions, we can write (4) un-
ambiguously in the less bracket-infested form

() (PmQ)v—Qe>r——P&Q",

where only one pair of brackets is required. (In this connection.
the student should notice the difference between — —(P & ). the
double negation of the conjunction of P and @, and — —P & O, the

conjunction of the double negation of P and Q)

These conventions will be adopted from now on. But it must be
stressed that they are practical guides to the eve, not theoretical
devices. In theory, a wff remains as defined above, complete with
its outer brackets and inner pairs of the same.

So far, we have described the basic syntax of the propositional
calculus: the definition given of a wif can be read as an exact account
of what is to be understood by the hitherto vague notion of 2
sentence in the symbolism; and clauses (@)~({) of that definition can
be read as giving what are often described as the formation rules of
the propositional calculus—the rules, that is, determining what is a
properly formed expression of the language.

But there are other syntactical notions which will be important
later and which it is useful to define now. The first of these is that
of the scope of a connective. Roughly speaking, the scope of a
conmective in a certain formula is the formulae linked by the
connective, together with the connective itself and the (theoretically)
encircling brackets. For example, the scope of * &’ in (4) is the wif
“(—~—P & @)’ and the scope of ‘<" in (4) is the wif (4} itself:
in general, the scope of any connective is a wif. More strictly, we
need to define the scope of an occurrence of a connective in a certain
wil: in (4) there are three occurrences of ‘ — ’; the scope of the first
occurrence (reading from left to right) is * — @, the scope of the
second is * ——P’, and the scope of the third is ¢ —P°. The scope
is what a particular occurrence of a connective controls. A precise
definition of scope is as follows: the scope of an occurrence of a
connective in a Wit is the shortest wff in which that occurrence appears.
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The Propositional Calculus 2

Consider, for example, the {(sole occurrence of ) v’ in (4): this
appears, within (4}, in such formulae as:

v

(i) ‘= Oyv— Q)7

(il ‘(P> Qv —0)°

() (P Q) V — 0y (==
The shortest formula in which it appears which is also a well-formed
formula by clauses (a)-( /) above 1s (ii1). and this is in fact the scope of
that occurrence of ‘v ', Even if the definition of scope seems a bit
gueer, the intuitive content of the notion should be obvious.

In terms of scope, we may define a second important syntactical
notion, that of one (ocourrence of a) connecuve being subordinaie,
in a certain wif, to apother. One (occurrence of aj connective 15
subordinaie to another if the scope of the first is contained in the scope
of the second. For example, in (4) the ‘- is subordinate to the
‘v’ and the ‘v’ and the * & * are both subordinate t¢ the © -3
The first * —  1s subordinate to ‘v ', but not to ‘-7, the second
‘" issubordinate to © & “butnotio ‘v the third ‘— is subordinate
to the second *— 7, and so 1o * &’ and ‘", but not to ‘=" or
‘v’. In any wif, there is exactly one connective to which all other
connective-occurrences are subordinate, which is in fact the con-
nective of widest scope. This i1s called the main connective, and 1ts
scope is the whole wff. For example, in (4) the main connective is
‘e’ and in (2} and (6} itis ‘v .

When we prove, by application of clauses (b)—(f), that a certain
formula is well-formed, we need to proceed from subordinate to
subordinating connectives. Thus, in proving (4) to be well-formed,
we establish that * — P’ is well-formed before we prove that* — —FP°
is; and that * — — P’ is before we prove that *(——P & @)’ is;
and so on~—at each step introducing a connective which subordinates
or has in its scope the previously introduced connectives. From this
point of view, the notions of scope and subordination as well as
clauses (a)-(f) are ways of indicating the natural structure of a wii.

With the notion of a wif clear in our minds, we can readily define
a sequent-expression {(an expression which expresses z sequent, in
the sense of the last chapter). As before, let us call ‘F’ the assertion-
sign, and let Ay, A,, ..., A, B be any set of wifs, Then

Ay Ay ... A b B
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is & sequent-expression. In other words, write down apy (finite)
number of wils, with commas between them; add to the right the
assertion-sign, and follow this by any wif; the result is & sequent-
expression. In the Jast chapter, at least 36 sequeni-expressions are
proved to express vaiid sequents, corresponding to the proofs
numbered 1-36.

This last definition introduces a device which is extremely helpful
in logic: the device of meralogical variables, such as * A" “ A, ",
“B°. (They appeared earlier, in Chapter 1, Section 4, in the state-
ment of Df. <>} Propositional variables, such as “ 77, * ", have
as instances propositions; numerical variables in algebra, such as
“x7, "y, have as instances numbers. But metalogical variables are
of service when we wish, as we do at present, to talk about symbols
themselves, for they have as mstances symbols or sequences of them.
When I say that A;, A,. . . .. A, are to be a set of wifs, this is entirely
analogous to saving, in algebra, that x;, x,. . . ., x, are to be a set
of numbers. We may iliustrate further the usefulness of metalogical
variables by restating clauses (¢)~(f) in & new form (these versions
have exactly the sense of the earlier ones).

(d'} any propositional variable is a wif;

(b'y1f A is a wif, then —A is a wil;

(¢’y if A and B are wffs, then (A - B} is a wff;
(d'yif A and B are wffs, then (A & B) is a wif;
(¢') if A and B are wils, then (A v B) is a wif;
(f') if A and B are wffs, then (A ~—> B) is a wff.

EXERCISE

Select formulae (say from Chapter 1), and write them out as wffs. In
each case, prove them to be wifs, using the definition of a wiT; state the
scope of each (occurrence of a) connective; state which is the main
connective, and the relations of subordination which are present between
the connective-occurrences.

2 THEOREMS AND DERIVED RULES

With the syntax of the propositional calculus now described, we
may turn to the first question raised in the introduction to this
chapter: what devices can we develop for utilizing already proved
sequents to shorten the proofs for other sequents? One of the main
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devices will be the introduction of theorems into proofs, so that we
begin by explaining what these are.

As was pointed out in Chapter I, two out of the ten rules of
derivaiion so far introduced—CP and RAA—have the property
that as a result of their application in a proof the number of
assumptions marked on the left falls by one. Suppose, now, that
before the applicauon of one of these rules there is only one
assumption on the left: then as a result of this application there
will be o assumption on the ieft. This possibility was countenanced
in the statement of the rules; for example, in Section 5 of the last
chapter, RAA was said to permut us, given a proof of B & —B
from A, to derive —A on the remaining assumptions (if any). Here
15 a simple example of a proof having this feature.

371 ()P & —P A
(2) —(P & —P) 1,1 RAA

At line (1), we assume the contradiction P & —F (nothing in the
rule of assumptions prevents us from assuming what we will).
Hence line (1) affirms that, given this contradiction, we have a
contradiction. We can thus apply RAA to derive the negation of
(1) or no assumptions at all. Consequently, at line (2) there are no
citations on the left-hand side.

We may state the sequent proved at line (2} of 37 very simply.

3 F— (P& —P)

Here the assertion-sign appears with no wifs written to the left of it,
corresponding to the absence of citation on the left at line (2}, The
conclusions of sequents which we can prove in this form we call
theorems; thus a theorem is the conclusion of a provable sequent in
which the number of assumptions is zerc. Instead of reading the
assertion-sign as ‘ therefore °, which is the most natural reading in
the case of sequents which have assumptions, in the case of sequents
provable with no assumptions we may naturally read it as ‘it is a
theorem that . . ’. Thus 37 states that it is a theorem that it is not
the case that P and not — P : for example, it is a theorem that it is
not the case that it is raining and it is not raining.

Most theorems of inferest are obtained in fact by application of
CP. For example:
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38 r P+ F (compare sequent 29)
I (IyP A
(Zy P> P .1 CP

/P> —— P
1 ()P A

1 () — P 1 DN

(3) P> ——P 1,2CP

4+ ——P > P
] (1) ——P A
1@ r | DN

3y ——P>P 12CP

41 + P & O - P (compare sequent 14)
I (hP&OQ A
I )P I &E
RNP&O>P 1,2CP
38 and 41, when compared with 29 and 14, suggest that a theorem
can be obtained from any sequent proved in the last chapter

simply by appending to its proof one or more steps of CP. For
example:

2+ (P>Q)>(—Q> —P)

(1) P @ A

2 ) -0 A

1,2 (3) —P 1,2 MTT
I (4 —Q> —P 2,3 CP

By (P> Q)>=(—Q> —P) 14CP

Here, lines (1)~(4) are identical with the proof of sequent 9,
P> QF—0- —P, and the step of CP at line (5) completes the
proof of 42. Similarly, three steps of CP added to the proof of
sequent 4 yields:
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43 F(P (O~ R) - (P J)- (P> R))

The importance of theorems resides in the fact that, since they are
provable as conclusions from no assumptions, they are propositions
which are true simply on logical grounds. Such truths, often called
logical truths or logical laws, occupy an important place not onlv in
logic but in philosophy also. Many of them have received special
names. For example, 37 is calied the law of non-contradiction: 3% is
called the law of idenriry; 39 and 40 are sometimes called the Jows of
double negation. As an example of 38, we may consider the propo-
sition that if it is raining then it is raining; this is true on purely
logical grounds, guite independently of the actual state of the
weather.

Theorems, such as P P, should be contrasted with the corres-
ponding valid sequents with assumptions, such as PFP. Whilst
the latter are argument-frames, patterns of valid argument, the
former are (logically) rrue propositions. * It is raining; therefore it is
raining * expresses an argument, of which we can ask: is it valid or
not? “If it is raining, then it is raining ° expresses a proposition,
of which we can ask: is it true or not? To confuse arguments with
propositions is amalogous to confusing validity with truth—a
confusion I tried to eliminate in the first section of this book.

There is one further theorem of importance, which cannot be
proved by a final step of CP since it is not conditional in form.
called the law of excluded middie:

44 FPv—P

1 (1) —(Pv—P) A

2 (P A

2 3HPv-—P 2vl

1,2 (4 (Pv—P)&—(Pv—P) 3,1 &l

1 (5 —P ' 2,4 RAA

i1 (6)Pv—P 5vI

I (D(Pv—P)&—(Pv—P) 61 &I
(8) ——(Pv —P) 1,7 RAA
(9) Pv—P 8 DN

We assume at line (1) the negation of the desired theorem, and aim
for a contradiction. By assuming P (line (2)), we obtain a contra-
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diction (hine (4)) resting on both (1) and (2}, so that {1} leads (line
(5)1 to —P. Thas leads to the same contradiction (line (7)), which
now, however, rests solely on (1). Hence, using DN, we obtain the
desired result. It 1s worth noung that at hne (6) we find Pv —P
resting on fis own negation as assumplion—given that it is not the
case, 1t is the case; this should throw some hight on the ‘ sur-
prising * result 23 of the last chapter.

The law of exciuded middle effectively affirms that, for any
proposition, either it or it negation is the case, which s fairly
evidently a2 logical truth. It s closely related to the law that cvery
proposition s either true or false, and from this law it receives its
name—a third or middle value between truth and falsity1s excluded
for all propositions. As a matter of logic, either it is raining or i1
15 not ramng: there 15 no third possibility. To be guite fair, i
should be said that it can be and has been doubted whether this law
has universal application: for example, is it true that either you have
stopped beating vour wife or vou have not?

The proof just given 15 a proof of the theorem P v —F. Suppose,
however, that we wished to prove v —(; a moment’s thought
should convince us that, i we systematically changed each occurrence
of * P’ in the given proof to * ¢, the result would be an equally
sound proof of this further theorem. Suppose, again, that we
wished to prove (g - R) v —(Q - R); slightly more thought should
convince us that a similar change of * P’ to * (@ = R}’ throughout
the proof will do the job. Consideration of such cases suggests
that, in proving a theorem, we are implicitly proving & wide variety
of other theorems closely related to the proved theorem by sub-
stitutions of the kind just instanced: so that it would be wasteful to
prove these other theorems separately—it would involve virtual
reduplication of the discovered proof. This in turn suggests a short
cut to new results.

The matter can be made more precise by defining a substitution-
instance of a given wif, as follows. A substitution-instance of a
given WiT 1s a wff which results from the given wff by replacing one or
more of the variables occurring in the wff’ throughout by some other
wffs, it being understood that each variable so replaced is replaced
by the same wil. For example, ‘ (G- R)v —(Q - R)’ is, by this
definition, a substitution-instance of ‘Pv —P’, because it results
from the latter wif by replacing the variable * P’ occurring in
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‘FPv —P' throughout by the same wff “(Q- R)'. Similarly,
*Ov — @ is a substitution-instance of * P v —F 7, and, n this case,
conversely too.

Here is a more complex case. Consider the wifs;

() P Qv —(=FP&O)
(2) RvS>Pv—(—(RVS)&P).

Then (2) is a substitution-insiance of (1), because (2) results from
(1) by replacing the variable “ P’ at its two ocowrrences in (1) by
“(Rv &) and the vanable ' 7 at its two occurrences in (1y by “ P,

It is worth stressing two features of subsutution which are easily
and often forgotten. First, the substitution must be made uniformiy
—i.e. throughout—for each substituted variable: the same wif must
be substituted for every occurrence of a given variable for a
substitution-instance to result. Second. it is only on propositional
varighles that this substitution can be performed, and nes, for
example, on negated variables. Thus

(3) =S+ Qv —(S& Q)
is not a substitution-instance of (1), by our definition, though
4y ~S=Q0v—A(—~—5S& Q)

a substitution-instance of (1): if we replace ‘P in (1) by * =S~
throughout, we obtain (4) but not (3). Hence a substitution-
instance of a wif will always be at least as long as the given wiff,
and none of the connectives in the given wfi disappear in the
substitution-instance. In an obvious though vague sense, a
substitution-instance has the same broad structure as the original.

Now we can say that a proof of a theorem constitutes implicit
proof of all the (indefinitely many) possible substitution-instances
of that theorem. The proof of P+ P (38 above) is implicitly a proof
of any theorem of the form A - A, for any wff A, and so mmplicitly
aproof of (=P > Q) > (—P > Q). RvS-> Rv S,and so on. More
precisely, suppose that the wff A expresses a theorem for which
we have a proof, and suppose that B is some variable occurring in
A. Then, if we systematically replace B throughout the proof of A
by some other wif C, we obtain a new proof of that substitution-
instance of A which results from replacing B throughout A by C.
And this can be extended readily to substitution for more than one
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variable in A. That the new proof realiv is 2 proof—that all the
applications of the rules of derivation remain correct applications
after the substitution has been performed-—can be seen by inspecting
the rules themselves: for the rules concern only the broad structure
of the wifs mvolved, and this structure i1s unaffected by substitution.
We may summarize our result in the following form:

(51} A proof can be found for any substitution-insiance of
a proved theorem.

This result for theorems can be extended to sequents in general.
We may define a subsiitution-instance of a sequeni-expression as any
sequent-expression which resulls from the given sequeni-expression by
replacing one or more of the variables occurring in some wff in the
sequeni-expression throughout the sequeni-expression by some other
wfis, 1t being understood that each variable so replaced is replaced
by the same wfl. (This definition virtually becomes the earlier
definition in the limiting case that the sequent-expression contains
just one wil.) For example, sequent 2 is a substitution-instance of
sequent 1, and

(5) P> (Q&R» —5), P, ——S+ —(Q & R)
. 18 a substitution-instance of

(6) P> (Q—>R), P, —R}F 0,
obtained by substituting throughout *(Q & R} for * Q "and * — 5"
for * R°. We proved that (6) expresses a valid sequent as proof 6.
We can now see that the proof of 6 constitutes implicit proof of the

sequent-expression (5) also. By entirely similar reasoning, we obtain
a generalization of the principle (S1):

(S2) A proof can be found for any substitution-instance of a
proved sequent.

The proof is indeed obtained by performing the relevant substitu-
tions systematically throughout the given proof, whereupon all
applications of rules of derivation remain correct applications in
the new proof.

The principles (S1) and (S2) reveal an important property of our
proved results, that of generality. We introduced symbols ‘P,
“Q’, “R’, etc., at the outset as stand-ins for particular sentences
of ordinary speech, which had the merit that they helped to reveal
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the logical form of complex sentences—a form that was shared by
other sentences. We can now see that they in fact deserve the label
“ variable ’, since a theorem or sequent proved for P is implicitly
proved for any proposition of the propositional calculus, just as 2
result in algebra containing ‘ x ' 1s implicitiy a result about any
number. In this way, our results, though stated for particular
propositions, implicitly concern any proposition expressible in our
notation, and are quite general in content.

We mayv take advantage of theorems and their substitution-
instances to shorten proofs by the rule of theorem introduction (T1).
This rule permits us to introduce, at any stage of a proof, a theorem
already proved or a substitution-instance of such a2 theorem. At
the right, we cite T1 (or TI(S), if a substitution-instance is involved)
together with the number of the theorem proved. On the left, of
course, no numbers appear, since theorems depend on 1o assump-
tions. For example:

45 PH(P & QYWVI(FP & — )

1P A
2y Ov—0 TI(S) 44

330 A

13 P&Q 1.3 &1

13 H(P&O)V(P&—Q) 4V

6 (6)—0 A

16 (DP& —0 1,6 &I

1,6 (Y(P&EDVPE—-O) TVl

1 HP&EOv(PE&E—Q) 2,3568VE
After assuming P, we introduce (line (2)) the law of excluded middle,
44, under a substitution-instance, and then proceed by vE, assuming
each disjunct of the law in turn (lines (3) and (6)), and obtaining
the desired conclusion from each (lines (5) and (8)). When we
apply vE at line (9), the conclusion rests only on P, since the dis-
junction at (2), being a theorem, rests on ne assumptions.
46 P> QFP & Q> P

1 (HP>Q A
QP& QP TI 41
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3 @3)p A

13 4) ¢ 1,3 MPP

13 (HP&O 3.4 &I

1 (OFP>P&Q 3.5CP

I (NP&O=P)&P=P& Q) 2.6 &l
(8) P& O <P 7 Df. s

To obtain the biconditional P & @ ——s P, we aim separately at the
two conditionals # & ¢ Fand P+ F & (O, but the first is a proved
theorem, 41, which we therefore mmtroduce directlyv by Tl. Con-
joining 27 and 46, we have the interderivability result

47 P & Qs PAF P (.

The rule TI is not a new fundamental rule of derivation: it does
not enable us to prove sequents which we cannot otherwise prove
by applications of our basic ten rules; it merely enables us to prove
more briefly further results by using resuits already proved. In the
case of 45, for example, we could prefix the proof given by § lines,
corresponding to the first 8§ hnes of the proof of 44 but with © ¢~
in place of * #°, and then continue as before. renumbering (1) to
(9) as (9) to (17). In place of TI(8)44, we would read on the
right 8 DN (compare line (9) of 44), and thus obtain a complete,
if lengthy, proof of 45 from our basic rules. Whenever a theorem
is introduced by TI, we can prefix the proof given by a proof of the
theorem from basic rules, and thus transform the proof into a
lengthier proof from first principles: only a certain renumbering of
lines is involved. Rules of this character, which expedite our proof-
techniques but can be shown not to increase our derivational
power, are called derived rules, in contrast to our basic ten rules,
which may be called primitive rules.

Having seen this use of theorems to shorten proofs. we naturally
ask whether an analogous rule will enable us to use sequents already
proved. For example, suppose that we have proved, on certain
assumptions, P> Q. Then, by sequent 9 (P Q@+ — Q0 -+ —P), we
should be able to conclude, without special proof, — Q= —P
on the same assumptions. Or suppose that we have proved,
on various assumptions, P-» @, O--R, and P. Then, by sequent
3 (P> @, 0> R, PF R), we should be able to conclude, without
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special proof, K on the pool of these assumptions. And thus
should apply not only to the sequents actually proved but to any
substitution-instances of them tco, in virtue of (82).

The rule of sequent introduction (5@}, again a derived not 2
primitive rule, enables us to do just this. It is z littie complex both
to state and to justify in full generality, but its main function should
be ciear from examples. Suppose that we have as conclusions in &
proof A, A, ... A, on varicus assumptions, and suppose that
Ay, Ay ..., A, FB s a (substitution-instance of a) sequent for
which we already have a proof; then SI permits us to draw B as 2
conclusion on the pool of the assumptions on which A, A, . . ., A,
rest. 51 may be justified as follows. By hypothesis {and; (52) if
necessary), we have a proof using only primitive rules of

(i) A, A, ..., A, FB.

Hence, by n successive steps of CP added to the proof. we can
prove as a theorem

(i) Ay (A, >( . (A,>B)..))

(the conditional theorem corresponding to the sequent in the way
in which the conclusion of 43 above corresponds to 4). Hence by
T1 we can introduce (ii) into the proof given with conclusions A,,
Ay, ..., Ay, as 2 new line resting on no assumptions. Now, by »
successive steps of MPP, using in turn Ay, A,, . . ., A, as antecedents
of given conditionals, we can draw as conclusion B. Evidently B
will depend, as assumptions, on any propositions on which anv of
Ay A, ... A, depends. This justifies SI, in the sense that it shows
how any proof using SI can be systematically transformed into a
proof of the same sequent using only primitive rules—the step of
TI involved can, as we already know, be eliminated in favour of
these rules.

48 —PvQFP-Q

1 (1) —PvQ A

1 (2 —(——P&—0) 1SKS)36(a)
1 @ ——Ps>Q 2 SK(S) 35(b)
4 @Pr A

4 (5 ——P 4 DN

58



I.4

I, 6y O
I

{
(T P> 0

Theorems and Derived Rules

3.5 MPP
4.6 CP

A substitution-instance of 36(a)is —Pv 0 F —(——~P & — () and a
substitution-instance of 35(b) is —(——FP & ~ Q)b ——P > (:
these two sequents are used to obtain (2) from (1) and (3) from (2)
by SI. The rest of the proof is then immediate. Together with

Exercise 1.5.1(7}, 48 vields
49 P Q- Py Q.

¢ PFQ-F

1 (LP

1 (2)—QvP

1 () QP
5f —PFP>(Q

1 (1y —P

1 () —PvQ

1 (P>
52 —P,PvQFQ

Iy —p

2 (@PvQ

3 (3P

I @ P>Q

L3 (80

-6 (60
L2 (g

53 —Q,PvQFP
(Proof similar to 52.)

58 (P> Q)v(Q->P)

(1) Pv—P
2 QP
2 (3 Q0P

A
I vl
2 81(S) 48

1vi
28148

A

A

A

18151

3.4 MPP

A

2,3,5,6,6 vE

TI 44

28150
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(LY (P Qv (Q>F) 3v1
{5y —F A
(6} P O 58151
(D (P> V(G FP) 6V
B (P> v(@>P) 124,

L U B

4%

o

JvE

An interesting feature of this last series of results is its progressive
nature: once 48 was proved, it was used to obtain 50 and 51, whach
in turn were emploved in the proofs of 52 and 54, 1t should be clear
by now that TI and SI are powerful devices for gemerating new
theorems and seauents out of old. Our work now has the pro-
gressive character of a mathematical theory such as Euclhidean
geometry.

Of the latest resulis, 50 and 51 are sometimes called the paradoxes
of material implication. To see their paradoxical flavour, bear m
mind that ¢ in 50 and 51 may be any proposition, even one guite
unrelated in content to P. Thus 50 enables us to conclude from the
fact that Napoleon was French that if the moon is blue then
Napoleon was French; and 51 emables us to conclude from the
fact that Napoleon was not Chinese that if Napoleon was Chinese
then the moon is blue. The name © material implication ” was given
by Bertrand Russell to the relation between P and Q expressed in our
symbolism by ‘P-»~ @’; we have been reading this if P then @,
but it is clear from 50 and 51 that ‘- has logical properties which
we should not ordinarily associate with “if ... then.... This
discrepancy is chieflyv brought about by the fact that, before we
would ordinarily accept ‘if P then ¢’ as true, we should require
that P and @ be connected in thought or content, whilst, as 50 and
51 show, no such requirement is imposed om the acceptance of
‘P Q. However, whilst admitting that this discrepancy exists,
we may continue safely to adopt ‘P -~ @’ as a rendering of “if P
then @’ serviceable for reasoning purposes, since, as will emerge in
Section 4, our rules at least have the property that they will never
lead us from true assumptions to a false conclusion. And any
reader who is inclined not to accept the validity of 50 and 51 is

“asked either to suspend judgement until this fact has been established
or to indicate exactly which step in their proof he regards as faulty
and which rule of derivation he thinks is unsafe and why. (A
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natural reply is that the step of vl at line (2 of each proof is unsound;
but compare the justification of vI in Chapter 1, Section 3. Anvway,
50 and 51 can be proved using only the rules A, &I, &F, RAA, DN,
and CP, in each case in nine lines; it 1S an instructive exercise 1o
discover these * independent ’ proofs, since they reveal how difficult
it is to ‘ escape ' the paradoxes.) Along with 22, therefore, we may
classify 50 and 51 as some of the more surprising consequences of
our primitive rules. 54 is a less well-known paradox: it claims as a
logical truth that, for any propositions # and ¢, it is either the
case that if P then O or the case that if ¢ then P. Either if it is
raining it is snowing or if it is snowing it 1s raining.

The principle of reasoning associated with 52 and 53 has the
medieval name modus iollendo ponens. This is the fourth medieval
modus I have mentioned, and the last there is, so this is a good place
to bring them together.

(iy Modus ponendo ponens is the principle that, if a conditional holds
and also its antecedent, then its consequent holds;

(i1} Modus tollendo tollens is the principle that, if a conditional holds
and also the negation of its consequent, then the negation of its
antecedent holds;

(iil) Modus ponendo tollens is the principle that, if the negation of &
conjunction holds and also one of its conjuncts, then the negation
of its other conjunct holds;

(iv) Modus tollendo ponens is the principle that, if a disjunction holds
and also the negation of one of its disjuncts, then the other
disjunct holds.

" (i) and (ii) have been embodied in our primitive rules MPP and
MTT. Clearly, in virtue of SI and 52 and 53, a rule analogous to
modus tollendo pornens, which we may call MTP, can be framed;
this, as a derived rule, will merely be a special case of SL. It runs:
given a disjunction and the negation of one disjunct, then we are
permitted to derive the other disjunct as conclusion. When required,
this rule will in fact be cited as MTP. Similarly, in virtue of SI and
34 and the readily proved @, —(P & Q) F —P, we may formulate,
as a special derived rule, MPT: given the negation of a conjunction
and one of its conjuncts, then we are permitted to derive the negation
of the other conjunct as conclusion.
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In connection with the modi, it is finally worth noting that MTT
need not have been taken as a primitive rule, but can be obtained
as a derived rule from the others. Thus:

55 P> Q, —QF—P
1 (WP>Q A

2 (2) —0 A

3 (3) P A

13 @0 1.3 MPP
123 5 0& 0 2.4 &
1.2 (6) —P 3.5 RAA

We prove 55 without using MTT. In view of SI, 55 can be used to
give exactly the effect of MTT as & derived rule. This would be of
interest if we were trying to reduce our primitive rules to as small 2
number as possible—an important consideration in certain areas of
logic.

Apart from the special cases of MTP and MPT, the most rewarding
sequents for use with SI are the various forms of de Morgan's laws,
as they are called, namely 36 and Exercise 1.5.1(f)~(h). which enable
us to transform negated conjunctions and disjunctions into pon-
negated disjunctions and conjunctions respectivelv. Also worth
remembering are 49 (enabling us to change conditionals into dis-
junctions), 35 (enabling us to change conditionals into negated
conjunctions), Exercise 1.5.1(¢) (enabling us to change conjunctions
into negated conditionals), and Exercise 1.5.1(c) and (d) (the so-
called distributive laws). Often it helps to introduce 44 and proceed
by VE, as in the proof of 54. And the trick of using the paradoxes
50 and 51, as in the same proof, should be borne in mind.

EXERCISES
1 Using only the 10 primitive rules, prove the following sequents:
(@) F(@ > R)> (P> Q)> (P> R))
G P> (Q>P& Q)
@QEP>R) > (> Ry (PvQ->R)
@FrP>Q & — Q) —P
(& H(—P>P)>P
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The following are valid sequents, becsuse they are substitution-
mstances of sequents already proved in this book. For each, cite by
number the proved sequent of which it is a substitution-instance, and .
what substitutions have been used:
GF>D->P, P> QrP
by — P oo P e e P} P
() —PE(Q&ER>QVPF~P>(Q&R~>QVP)
(D=0 Q) —A(~0> O F ~(~ 0= O)
{e) ~(SvPIFSv P> (P & Q<> Rv—5)

Prove by primitive rules alone:

(g} b P Pv O

Using this result, prove by primitive rules and T1:
N Qg>PrHPv (P

In view of Exercise 1.4.1{¢} this gives:

() Pv Q> P+ - F

Prove, using primitive rules and ST in connection with 50:
(P& QAP & (P <=3 (J}

Using primitive or derived ruies, together with any sequents or
theorems already proved, prove:

(@} FPV(P> Q)
G P> DVI@>R)
@Q+H(P>Q)>P)>P
(d)~Q+P>(C>R)
(&P, —PrQ
(f) Pv Q4 —P > Q (cf. Ex. 1.5.1())
&) —P>DAP&~Q
(B (P>0Q)> QHPVQ
HP>BVv(P>R-P>QVR
NP+ Q4 (P> Qv
(k) Q+P & Q<> P
(D —QFPv Q> P
Let A and B be any propositions expressible in the propositional
calculus notation.
(i) Show that A + B is provable by our rules if and only if it is
provable that + A->B;
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(i1) Show that A4+ B is provable if and only if it is provable that
b A e B

7 In effect, our role DN is two rules combined: (i) from A to derive
— — A and (1) from — - - A to derive A. Show that (i) can be obtained
as a derived rule from the other primitive rules (compare the corres-
ponding demonstration for the rule MTT, sequent 55).

3 TRUTH-TABLES

The last section has answered the first guestion raised at the
beginning of this chapter. To help answer the other two guestions
(Are our rules of derivation safe? Are they compieie?), we
approach in this section the propositional calculus in a quite new
way, by the techmique of truth-tables. This technigue will also
incidentaliy afford us 2 method of showing the invalidity of sequents,
whereas the rules of derivation merely show their validity. Truth-
tables are easy to master, so our treatment here will be brisk,

The truth-table method is a method for evaluaring wifs: we assign
values (called truth-values) to the variables of a wff, and proceed
by means of given tables to calculate the value of the whole wif.
We may usefully compare the corresponding mathematical procedure
for evaluating algebraic expressions, say

(1) (x + ¥z — (¥ + 20y + x).
Let us assign the value 10 to x, 3 to y, and S to z. By substitution,
we obtain :
(2) (10 + 3)5 — (3 + 5)(3 + 10).
Computation by given tables yields successively
(3) 13 x 5—8x 13;
4y 65 — 104,
(5) — 39,

The result at (5) is the value of the whole expression (1) for the
assignment of values to the variables x = 10, y = 3, z = 5.

In the case of wifs of the propositional calculus, there are only
two possible values which variables are permitted to take, the true
and the false, which we mark by ‘T’ and ‘ F’ respectively. Our
assumption that there are only these two possibilities is in effect
the assumption that every proposition is either true or false, and
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corresponds to the law of excluded middle (theorem 44}, These two
values are called rruth-values.

Ir order to compute the truth-value of 2 whole wff for 2 given
assignment of truth-values to its variables, we need tabies (called
matrices) for each logical connective showing how the value of 2
complex formula is determined by the values of its parts: the
mairices correspond to multiplication- and addition-iables, with the
difference that. since there are only two values to consider. they can
be given in toio whilst the mathematical tables can only be given in
part {we learn, e.g., multiplication-tabies wp 10 12). The matrices

are: B B
Af—A A>BITF A&B|TF
TIF (TITF LIT|TE
FIT FITT F|FF

B B
AvBITF A<>BITF
S T(TT T TF

AFITE AFIFT

The matrix for ‘— is motivated by the consideration that the
negation of a true proposition is false and the negation of a false
proposition is true. The matrix for ‘ & * is motivated by the con-
sideration that a conjunction A & B is true if both A and B are true,
but otherwise false. The matrix for ‘v’ is motivated by the con-
sideration that a disjunction A v B is true if at least one of A and B
is true, but otherwise false. The matrices for ‘=’ and ¢~ have
peculiarities, and we shall consider their motivation a little later.
To illustrate the use of these matrices, let us evaluate the wif

6 P>~v—-0«>—~—P&Q
for the assignment of values P = T, Q = F. Substitution gives
(N (T>F)v—-F<>——T&F,
and computation by the matrices yields successively
8 FvT <> —F&F;
©) T>T&F,
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(10) T~ F:
{11y F.

Thus the whole wff takes the value F for the given assignment. We
can conveniently abbreviate the working to one line of calculation
performed below the wif, thus:

P Q0P O)v—Qesr——P &Y

T FITFFTTF F TFTFF

On the left, we list the variables i the wiff, and under them write
the assignment 1 gquestion. We then transcribe the value of each
variabie to each occurrence of it in the wil, and compute in stages
the value of the wil as a2 whole. Tt 15 worth noting that these stages
correspond to the relations of subordination among the connectives
(in the sense of Section 1): we obvicusly need to compute the value
of a subordinate connective before we can compuie its subordinating
connective. Finally, the value of the wif itself appears under the
main connective—in this case " ——s".

A truth-tabie test on a wif i1s an evaluation of the wfl for every
possible assignment of truth-values to its variables. 1f a wif has only
one variable, say ' P’ then there are two possible assignments,
P="Tand P=F. 1If a wil has two variables, sav P and O. then

O=F. (i) P=F, =T, () P=F, O=F. In general, il a
wff has n variables, there will be 2" possible assignments.

We may display a truth-table test on a wifl by performing the
evaluation for each assignment on a separate line under the wiff.
For example:

P OIP OV Q0= ——P&(]
T T{TTTTFT T TFTTT
T FITFFTTF F TFTFF
F TIFTTTFT F FTFFT
F FIFTFTTF F FTFFF

(The second line of this test is, of course, identical with the line
computed earlier for the same wff.) When the test is given in this
form, the values of the whole wff are shown in the column under the
main connective, which we may call the main colunm.
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The student ought guickly 1o learn from these remarks how (o
perform truth-table tests for himself, and he will probably find himself
devising short-cuts (for example, * —— * may be ignored wherever
it occursj. It is useful to have a standard order for the different
possible assignments to variables. The standard order for two
variables is shown above: the standard order for three variables is
shown in the following test, and amalogous standard orders for
assignments to four or more variables can be devised by the reader.

F ¢ RI(FP& -~ VR»(R& (s —P)
TT T TFFTTTT TFFTTET
T T F TFFTFFT FFFTTFT
T F T\TTTFTTF TTTFFFT
T F FITTTFTFT FFTFTFT
¥F T TW\FFFT "TTTFFTTTF
F T FIFFFTFFT FFFTTTF
F F TWVFFTFTTT TTTFTTF
F F FIFFTFFFT FFTFTTF

For wifs containing four variables, sixteen lines are required; in the
case of five variables thirty-two; and so on. Hence actually io
perform a truth-table test becomes increasingly impracticable as
the number of variables goes up. Despite this, it is worth mentioning
that, for any number of variables, truth-table testing is an entirely
mechanical procedure. Machines can be, and have in fact been,
called upon to perform truth-table tests (they usually prove better
at the job than human beings). In this respect truth-table testing
contrasts with the discovery of proofs in general; a proof, once
discovered, can mechanically be checked (we have indeed specified
our rules of derivation partly so that this should be so). But they
cannot in genera! be discovered by machine.!

In pursuance now of a motivation for the matrices for ‘- and
‘—<—’, we note that, in virtue of sequent 49, P> Q and —Pv O
are interderivable. We may naturally expect, therefore, that they
will have the same values for the same assignments to their variables.
If we truth-table test * —Pv O, we obtain

 Actually, it turns out, in view of the results in Section 5 of this chapter, that
proofs can be mechanically discovered at the level of the propositional calculus.
But it is known that there is no mechanical procedure for proof-discovery in the
predicate calculus, to which we turn in Chapters 3 and 4.
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P Ogl—Fv g
T T|FTTT
T F!FTFF
F T TFTT
F F|TFTF

which reveals the same values, assignment for assignment, as those
for “Pes Q.

in virtue of 35, P 0 and —(F & — O) are also interderivable,
and a truth-table test on * — (P & — Q) " gives just the same result.
Intuitively, the most important thing about the proposition that if
£ then O is that we certainly wish it to be false 1f £ 1s true and ¢
false, and this at least is secured by the matrix. The other values,
which admittedly seem rather arbitrary, may be justified by the

¢

interderivability results just cited. Once the matrix for "= 1s
agreed, the matrix for * =" follows, since we want P -« ( (o be
equivalent to (P -~ Q) & (¢ - P). Actual truth-table computation
of this latter wif gives just the matrix for “ = "0 a fact which the
reader should check for himself.

On the basis of a truth-table test, we can classify all wffs of the
propositional calculus 1n one of three ways. If & wil takes the value
T for all possible assignments of truth-values to its variables, 1t is
sald to be faurclogous or a lautology. I @ wif takes the value F for
all possible assignments of truth-values {o its variables, it is said to
be inconsistent or an inconsistency. If for at least one assignment it
takes the value T and for at least one assignment it takes the value
F, it is said to be contingent or a contingency. Clearly, every wif is
one and only one of these three things, and which it is can be read
~off directly from the main column of the truth-table: if all T’s
appear there, it is tautologous; if all F's, inconsistent; if at least
one T and at least one F, contingent. (Sometimes, in place of
‘ inconsistent °, the term  contradictory * or ‘ self-contradictory * is
used ; we have avoided this here, since a contradiction was otherwise
defined in Chapter 1, Section 3.) We further say that a wif is
consistent if it is either tautologous or contingent; thus a wi is
consistent if and only if for at least one assignment it takes the
value T, that is, if and only if it is not inconsistent. Similarly, a wif
is non-tautologous if it is either contingent or inconsistent.

Of these concepts by far the most important is that of a tautology.
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Tautologies are true whatever the truth-vaiues of their constituent
variables, which is to say that they are true simply in virtue of their
logical form, their structure in terms of logical connectives, Hence
tautologies, like theorems, can be viewed as expressing logical laws,
propositions true simply on logical grounds. This raises the guestion
of the relation between theorems (defined in terms of our rules of
derivation) and tautologies (defined in terms of the truth-table test).
This question is answered in the following two sections, where we
show that all theorems are tautologies and that ali tautologies can
be proved as theorems from our rules.

There are six logical relationships between two propositions
which are recognized in traditional logic, and we mMay use i certain
cases the truth-table method to establish the presence or absence of
these. For each relationship I first define it, and then show how
truth-tables may be applied in the relevant cases.

(i) Two propositions A and B are traditionally called contrary if
they are mever both true (though they may both be false); that 1s, if
whenever one is true the other is false. Now to say that they are
never both true is to say that their conjunction is always false, which
s to say that the negation of their conjunction, —(A & B), is always
true. Hence, i A and B are expressible in propositional calculus
notation}) we may discover whether A and B are contrary by
subjecting — (A & B) to a truth-table test: if it is tautologous, they
are; if not, they are not. For to say that — ( A & B) is always true
is to say that it is true for all possible assignments of truth-values to
its variables.

(ii) Two propositions A and B are subcontrary if they are never
both false (though they may both be true); that is, if whenever one
is false the other is true. Now to say that they are never both false
is to say that always at least one of them is true, which is to say that
their disjunction, A v B, is always true. Hence, as in (i), if A and
B are expressible in propositional calculus notation, A and B are
subcontrary if ard only if A v B is a tautology.

- (iii) A proposition A implies a proposition B if whenever A is true
B is true (but not necessarily conversely). It is easy to see from the

' We impose this restriction here and in the other cases because for more complex
propositions, of the kind studied in Chapters 3 and 4, propositional calculus
notation is inadequate, and truth-table machinery can no longer be used to test
for these relationships.
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i

matrix for ‘-~ that, if A and B are expressible in propositional
calculus notation, A implies B if and only if A > B is tautologous.
In this case, it is sometimes said that A is superimplicant or super-
alternate to B.

(iv} A proposition A is implied by a proposition B if whenever B
is true A is true (but not necessarily conversely). It is again easily
shown that, if A and B are expressible in propositional calculus
notation, A is implied by B if and only if B A is tautologous. In
this case, it is often said that A is subimplicant or subalternaie 1o B.

(v) Two propositions A and B are equivalent if whenever A is
true B is true and whenever B is true A is true. It is easily shown
that, if A and B are expressible in propositional calculus notation,
A is equivalent to B if and only if A < B is tautologous (from this
standpoint, A - B affirms really that A and B have the same
truth-value). In this case, A and B are sometimes said to be
coimplicant.

(vi) Two propositions A and B are contradiciory if they are never
both trae and never both false either; that is, if whenever one 1s true
the other is false and whenever one is false the other is true. Now
to say that they always disagree in truth-value is to say that it is
always not the case that they have the same truth-value. Hence, if
A and B are expressible in propositional calculus notation, A and B
are contradictory if and only if —(A <> B} is tautologous.

If none of these six relationships holds between A and B, then
A and B are independent. If A and B are expressible in propositional
calculus notation, a series of truth-table tests will establish which
relationships hold between them and which do not.

This piece of traditional logic can be viewed as an (inadequate}
attempt to list all possible relations between two propositions which
can be defined in terms of truth-values. A simple mathematical
count shows that there are sixteen such relations, which we exhibit
in the following table:

ABEaibEcdefghzij%mn‘gep
T T|T|T|T|T|T|T|T|T|F|F|F E F|F E|F
TFTTTTFFFIFTTT‘TFFFF
F T|T|T F|F|T|T/F|F|T T F|F|T TF|F
F F|T F T|F|T|F|T/F T/F|T|FIT|F|T|F
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The sixteen columms (a-(p) give all possible distinct matrices there
can be of the kind associated with ‘=", * &, ‘v’ and ‘-’
earlier in this section. Thus we recognize in (e} the matrix for * =,
in (h) the matrix for * &, in (b} the matrix for *v’, and in (g) the
matrix for ‘", Now P> Q P& O, Pv Q, P> O can be
described as funcrions of P and (0, in just the sense that x + yis a
function in algebrza of x and y. To distinguish such functions from
mathematical functions, we call them rruth-functions. Then the
above table lists all possible puth-funcrions of two variables.

If A and B are expressible in propositional calculus notation, the
claim that A implies B is just the claim that the function of A and B
defined by (e}, namely A - B, is tautologous. Similarly, the claim
that A and B are subcontrary is just the claim that the function of A
and B defined by (b}, namely A v B, is tautologous. Since the
distinct functions defined in this way by columns (a}-(p) are
exhaustive, there are exactly sixteen distinct such claims of relation-
ship between A and B that can be made: namely, for each function,
the claim that that function of A and B is tautologous. In fact, to
say that A and B are equivalent is to say that the function defined
by (g), A < B, is tautologous. To say that A is implied by B is to
say that the function defined by (c) is tautologous; fora test of B A
for the four possible combinations of truth and falsity yields column
(¢}, showing it to be the function defined by that column. To say
that A and B are contrary is to say that the function defined by (i)
is tautologous; for a test of —(A & B) yields column (i), showing it
to be the function defined by that column. Finally, to say that A
and B are contradictory is to say that the function defined by (j) is
tautologous; for a test of —(A > B) yields column (j), showing it
to be the function defined by that column. Thus with each traditional
relationship (i)-(vi} is associated one column from (a)~(p), and there
are ten further similarly definable relationships which are not
traditionally distinguished.

An interesting further feature of the sixteen functions is that, for
each of them, an expression can be found employing only ‘-’ and
¢ — which is equivalent to it. For the record, we list a possible
such set of expressions:

(a) A A (p) —(A + A)
(b) —A~B {0} —(—A - B}
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() B> A (n) —(B > A)

{dy A {m) —A

(e} AB I —(A = B

() B ) —B

(g) ~((A->B)» — (B> A) ) (A o By oo (B s A
(h) —(A > —B} (i) A> —B

Actual testing of these expressions, by the matrices for =" and
¢ — ", will reveal them to be equivalent to the sinteen listed functions.
In view of the fact that * P-» ¢’ is equivalent to both * —Pv ¢
and * —(FP & — Q) °, as we saw earlier when defending the matrix
for “-»", it is not surprising that, for each function, an expression
can be found containing only “v "and * — "{oronly * & "and * — ")
equivalent to it.

One final application of truth-table procedures deserves mention
here. It connects with substitution-instances, as defined in the
previous section. We first observe that any substitution-instance of o
tautology is itself tautologous. Although I shall not strictly prove
this proposition here, it ought to be fairly obvious in any case. If
A is a tautology, A takes the value T for all possible assignments of
truth-values to its variables. In the process of substitution on A,
we replace each variable systematically by a certain wif. When a
substitution-instance of A is subjected to a truth-table test, that wff,
for each assignment, will take throughout the same value, T or F.
Hence from this point onwards the test will follow the same pattern
as some line of the original truth-table test, and must end by assigning
T to the substitution-instance as well. In a similar way, but con-
sidering F instead of T, we see that any substitution-instance of an
inconsistency is itself inconsistent.

In the case of contingencies, however, a different situation arises.
We can show that, for any contingent wff, a substitution-instance can
be found which is tautologous, and a substitution-instance can be found
which is inconsistent. 1 do not prove this here, but I shall indicate
a quite general procedure for finding such substitution-instances, and
if this procedure is followed in particular cases the reader will soon
see why it works.

Let A be a wif which is contingent. Then for at least one assign-
ment of values to its variables it takes the value T. Select one
particular such assignment, and for each variable in A substitute
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any tautology (say * £ = P} if the variable takes the value T in that
assignment, and any inconsistency (say * — (P - P} ") if the variable
takes the value F in that assignmeni. Then the resulting substitution-
instance of A will be rauroiogous. Again, since A is contingent. for
at Jeast one assignment of values to its varizbles it takes the value F.
Select one such assignment, and then carry through exacily the
samne procedure, substituting ' P P’ say, for any variable with
value T in the assignment and * — (P - P}’ say, for any variable
with value F. Then the resulting substitution-instance of A will be
inconsisteny.

One simple example will suffice. “Pv @’ is contingent, taking
the value F if P = F and O = F and otherwise the value T, Select
the assignment # = T, ¢ == F, for which Pv @ = T, and accord-
ingly substitute for *#° * P+ F’ and for * ¢’ —(P->P)’. Then
the result, ‘(F-P)v —(P->P)’, is a tautologous substitution-
instance of *Pv ¢ . Similarly, * —(P-—>-P)v —(P> P)’. corre-
sponding to the assignment P=F, O = F, is an inconsistent
substitution-instance of the same contingent wff.

EXERCISES
1 (i) Perform truth-table tests on the following wffs, and state in each
case whether the wff is tautologous, contingent, or inconsistent;
(@) P> P
(b P> —P
(¢ —(P>P)
d)p
(e) —P->(P->(0)
() (P <> Q) <> —(P - )
&P &Q) & —(Pe>Q)
WPv—) & —(=P>—0)
HOFP&QC>R)>»(P>R &(Q>R)
(yPv@> Ry<>(P->Ry& (0> KR)
(Y(P> Q) &(R>S)>(PVR-> (VS
(i1) In the case of contingencies among (a)-(k) of (i), find a substitution-
instance which is tautologous and one which is inconsistent.
2 (i) Find expressions equivalent to each of the sixteen possible truth-

s

functions of two variables employing (a) at most * &’ and * — °,
(b) at most ‘v’ and * — .
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(ii} We mav denote the funcuons (i} and (o} in the table of possible
truth-functions by A | B and " A VB respectively {these are some-
times known as the * stroke -functions: “ A | B may be read " not
both A and B' and "A VB’ as ‘neither A nor B Find
expression equivalent to each of the sixteen possibie truth-
functicns of two variables emploving (g only * |7, {b} only * ¥
(hint: a test of P | P’ and ‘P V¥ P’ reveals their equivalence
to * —P°. Thus ‘(P | OY(P| Q) is equivaient to * —(P | Q)"
and so to " P & Q7. Similarly, T (P ¥ 0% v (F ¥ ()7 is equivalent
to " Pv O

3 (i) Let A be a wif containing any number of variables but " & ° as
its sole connective: (@) show that A cannot be tautclogous; (b}
show that A cannot be inconsistent.

(1) Let A be a wil containing any number of vanables but “ v’ as 18
sole connective: {g) show that A cannot be tautologous; (b) show
that A cannot be inconsistent.

4  Consider the three wfis:
(Y P &R Fy» —
{(BYP&E&(OQVER
(¢} P> (@ <> R}
(i) Show that none of (a{c) implies anv other.
(ii) Show that one and only one of (¢)<{c} is subcontrary to both
the others,

5 (i) Show that, for any wffs A and B, if A and B are contrary then each
implies the negation of the other and their negations are sub-
contrary.

(ii) Show that, for any wffs A and B, if A and B are subcontrary then
the negation of each implies the other and their negations are
contrary.

(iii) Show that, for any wifs A and B, A and B are equivalent (a) if and
only if —A and —B are equivalent, and () if and only if A and
—B are contradictory.

6 (i) Draw up z table showing all possible fruth-functions of one
variable, and for each find an equivalent expression containing
only ‘-’ and * —°,

(ii) How many distinct possible truth-functions of three variables are
there? Of n variables? ‘
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4 THE CONSISTENCY OF THE PROPOSITIONAL CALCULUS
We apply now the truth-table approach io the propositional calculus
in order to obtain an affirmative answer to the question: are our
rules of derivation safe? We in fact show that every theorem
provable from the rules is tautologous by a truth-table test, so that
no contingent theorems and no inconsistent theorems exist, and in
particular no contradiction A & —A, which would of course be
inconsistent, can be derived. We are interested, however, not only
in theorems buf in sequents in general; we want to ensure that all
derivable sequents are reliable patterns of argument. To achieve
this broader result, we need first to extend the application of the
truth-table procedure from wifs to sequent-expressions.
The extension 15 easy. Let

Ay .. A,FB

be any sequeni-expression. Then a truth-table test on Ay, .. .,
A, + Bisan evaluation of the wifs A, ..., A, B for every possible
assignment of truth-values to the variables occurring in A,, .. .
A, FB. We may display such a test by listing to the left of the
sequent-expression all variables occurring in any of the wifs Ay, . . .,
A, B, writing under them all possible assignments of truth-values
in the standard manner, and then truth-table testing each wif in the
sequent-expression separately for these assignments. Thus:

Q,P—;»Q,—»QPWP
TITTT FT F1
F TFF TF FT
T'FTT FT TF

FIFTF TF TF

R T

Next, we define what it is for a sequent-expression to be tautolo-
gous. A, ... A,F B is tautologous if, for every assignment of
truth-values to its variables for which all of A,, ..., A, take the
value T. B takes the value T also. The sequent-expression just tested
is tautologous; there is only one assignment (P = F, ¢ = F) for
which ‘P> Q' and * —Q’ both take the value T, and for.this
assignment the conclusion * — P’ also takes the value T. Equivalently
A, ..., A, FBis tautologous if there is no assignment for which
Ay, . .. Ay are all true and B false. In the limiting case where the
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sequent-expression has no assumptions A, . .., A,, this definition
stmply requires that B take the value T for all assignments of truth-
values to its variables, and so + B will be a tautologous sequent-
expression jusi in case B is a tautologous witf.

A second. sometimes useful, way of explaining a tautologous
sequent-expression 18 1o associate with each sequent-expression
Ay ., ALt B e single wit which we call the corresporiding condit-
- ional:

Ay (B - (0 (A, > B, L

Thus for the sequent-expression tested above the corresponding
conditional 1s
(P O (— o — P,

As a limiting case, if there are no assumptions A,, ..., A, the
corresponding conditional is to be simply B itself {(which is slightly
queer, since B may actually not be a conditional at all). Then we
can show that a sequent-expression 1s tautologous (in the sense
defined above) if and only if its corresponding conditional is
tautologous (in the sense of the previous section).

For suppose that for a sequent-expression A,, ..., A,FB its
corresponding conditional is not tautologous. Then some assign-
ment of truth-values to the variables in Ay, . . ., A, F B yields F as

the value of A, = (A, (... (A, B)...)). Bythe mairix for ‘=’
this is only possible if A; = T, and A, (.. . (A,>B).. )= Ffor
that assignment. This in turn is only possible if A, = T and
Ag>(...(A,>B)...)=F. Continuing, we see that for this

assignment A,, ... A, must a/l take the value T and B the value
F, whence A;. ... A,FB is not tautologous either. Conversely,
suppose A;, ... A, t B is not tautologous. Then for some assign-
ment A,, ..., A, all take the value T whilst B takes the value F.

For this assignment, by the matrix for ‘=", A, -+ B = F, whence
A, ;> (A,->B)=F, and so on. Hence, the corresponding con-
ditional, A, > (A, = (.. . (A, - B) ...}, must take the value F for
this assignment, and so is not tautologous either.

As an alternative, therefore, to the above test, we may test the
corresponding conditional of a sequent-expression in the normal way
to establish whether the sequent-expression is tautologous or not.

Let us, for brevity, call a sequent derivable if a proof can be found
for it employing only the ten primitive rules of derivation. The main
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result of this section is that zll derivabie sequents are tautologous,
We state the result in the following metatheorem: {(we have reserved
the title * theorem ~ for certain results in the propositional calculus,
but this is rather a result abour the calculusy:

Metatheorem I: All derivable sequents are tautologous.

Outline of proof. We should bear in mind that the number of
derivable seguents 1s indefinitely large (for example, all possible
substitution-instances of a derivable sequent are also derivable, as
we know by (52)), s¢ that we cannot proceed by inspecting mdividual
sequents In turn: we need a more general method of proof. The
method we employ is closely related to the mathematical method
known as proof by induction. If we wish to show that af/ numbers
have a certain property, it suffices to show that 0 has the property,
and that if a given number has the property then the next number in
sequence has the property.” Given that 0 has the property, we can
thus show that 1 has it; given that | has it, we can show that 2 has
it; and so on, up to any given number. In our present case,
remember that a derivable sequent has, by definition, a proof, and
that this proof, which may be as long as we please but can oniy be
finitely long, proceeds in stages. It has to begin with an application
of the rule A, since there 1s no other way of imitiating a proof. And
any later step (unless it is also an application of A) is based in &
definite way on earlier lines of the proof. If we can show, therefore,
(1) that any application of A by itself yields a tautologous sequent;
and (it) that any application of the other nine rules based on lines
corresponding to tautologous sequents vields also a tautologous
sequent, then we shall effectively have shown that any sequent which
is derivable at all is tautologous. Thus our proof falls intc two
stages: we show (a) that any application of A yields a tautologous
sequent; we show (B) that, if at a given stage in a proof the earlier
lines correspond to tautologous sequents, ther an application of one
of the other nine rules to some of these lines yields a resulting line
which also corresponds to a tautologous sequent. Thus in (8) the
work naturally falls into nine phases, corresponding to the nine
rules, and in each phase we establish a conditional proposition.

* By *number’ is here meant a natural number (cf. footnote 1, page 105),
i.e. one of the numbers 0, 1, 2, 3, efc.
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Proof of (o). Any sequent derivable by the rule of assumptions alone
is tautologous. For such a sequent must be of the form A+ A,
which is obvicusly tautologous.

Proof of (B). (i) MPP. In an application of MPP, we pass from
premisses A and A-~B to conclusion B, on the pool of the assump-
tions on which A and A - B rest. WNow suppose that the lines where
A and A-=B appear correspond 1o tautologous sequents, We wish
to show that the new line where B appears will also correspond to
a tautologous sequent. Let us suppose this is not so, and deduce an
absurdity. If the new sequent is not tautologous, then clearly some
assignment of truth-values to its variables gives B the value F but
all its assumptions the value T. Since these assumptions include all
those on which A and A - B rest, the same assignment will give A
and A -~ B the value T, because by supposition the lines where they
appear correspond to tautologous sequents. But if this assignment
gives both A and A - B the value T, it must also give B the value T,
by the matrix for ‘-»": an absurdity, since we supposed B to take
the value F for the assignment in question. Thus any application
of MPP to tautologous sequents vields tautologous sequents.

(ity DN, In an application of DN, we pass from premiss A to
conclusion — — A on the same assumptions, or vice versa. Suppose,
in the first case, that the line where A appears is tautologous. Then
any assignment of truth-values to the variables in the sequent there
proved which gives each assumption the value T gives A the same
value T. By the matrix for * — °, each such assignment will also
give ——A the value T, so that the new line where — — A appears
will also be tautologous. The second case (where — —A is the
premiss and A the conclusion) is similar. Thus any appiication of
DN to tautologous sequents yields tautologous sequents.

(1) MTT. Considerations similar to those in (i) show that any
application of MTT to tautologous sequents yields tautologous
sequents. {Since MTT can be obtained as a derived rule, as was
shown in Section 2 of this chapter, it need in any case not be
considered here.)

(iv} CP. Effectively, in an application of CP, we pass from a
sequent of the form A,, ..., A, A, ;FB to one of the form
Ay ooy Agt Ay B, where A, is the discharged assumption.
Suppose that A,, .. ., A,, A, ., F Bis tautologous, but that A,, . .
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Ayt A, > Bisnot. Then some assignment of truth-values to
the variables in the sequent gives A,, ... A, all the value T, and
Apoi> B the value F. By the matrix for * =, this assignment gives
A,y the value T and B the value F, for otherwise A, , = B would
have the value T. But such an assignment would render A, . . . A,,
4,1t B non-tautologous, contrary to supposition. Thus any
application of CP to tautologous sequents vields tautologous
sequents.

(vj &I In an application of &I, we pass from premisses A and
B to conclusion A & B. on the pool of the assumptions on which
A and B rest. Suppose that the lines where A and B appear corres-
pond to tautologous sequents. Then any assignment of truth-values
to the variables in the pool of assumptions which gives all these
assumptions the value T gives A and B separately the value T, since
their respective assumptions are included in the pool. By the matrix
for* &, therefore, any such assignment gives A & B the value T also.
Thus any application of &I to tautologous sequents vields tautolo-
gous sequerts,

(viy &E. Itisleft as an (easy) exercise for the reader to show that
any application of &E to tautclogous sequents yields tautologous
sequents.

(vii) vI. Consideration of the ‘v’ matrix shows that any applica-
tion of vl to tautologous sequents yields tautologous sequents.
Details are left to the reader.

(viii) vE. In an application of VE, we pass from premisses
A v B, together with a proof of C from A and a proof of C from B,
to the conclusion C on the pool of the assumptions on which A v B
rest and those used to derive C from A (apart from A) and those
used to derive C from B (apart from B). Now suppose that the line
where A v B appears corresponds to a tautologous sequent, and so
do the lines where C appears as a conclusion from A and as a
conclusion from B. We have to show that the line where C appears
as a conclusion from the complex pool of assumptions is also a
tautologous sequent. Suppose, therefore, that it is not. Then some
assignment of truth-values to its variables gives all the assumptions
the value T, but C the value F. These assumptions include all those
on which A v B rests, whence the assignment must give A v B the
value T. By the ‘v’ matrix, therefore, either A or B separately has
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the value T for this assignment. Suppose that A has the value T.
Then the line where C is derived from A cannot be tautologous,
since this assignment gives all its assumptions including A the value
T, yet C the value F. Suppose then that B has the value T. Similarly,
the Iine where Cis derived from B in this case cannot be tautologous.
In either case, we have an absurdity. Hence any application of vE
to tautologous sequents yields tautologous sequents.

(ixj RAA. Effectively, in an application of RAA, we pass from
a sequent of the form Ay, .. ., A,, A,eu FEB & — B to one of the
form Ay, ..., A,F —A,.,. Suppose that the former sequent is
tautologous but the latter not. Then some assignment of truth-
values to the variables in the latter sequent gives A,, . . ., A, all the
value T and —A, ¢, the value F, whence, by the matrix for * — °, it
must give A, the value T. The assignment thus gives all the
assumptions of the former sequent the value T, sc that, on the
supposition that this is tautologous, it must give B & — B the value
T also, which is absurd by the matrices for * & "and * — *. Thus any
application of RAA to tautologous sequents vields tautologous
sequents.

In sum, if any application of any of the nine rules is made on
tantologous sequents the result is a tautologous sequent. Since by
A we can only start with tautologous sequents. any sequent we can
derive by our primitive rules is tautologous, and we have the
metatheorem.

As an immediate consequence of Metatheorem I, for the special
case where a derivable sequent has no assumptions and so its con-
clusion is a theorem, we have:

Corollary I: All theorems of the propositional calculus are taurologous.

We say that a logical system such as the propositional calculus is
consistent if our rules for it do not enable us to derive as a theorem
a contradiction. Since a contradiction A & — A is an mconsistency,
and so not a tautology, we have from Corollary I:

Corollary I1: The propositional calculus is consisient.

It should now be clear why, in discussing derived rules such as TI
and SI, I stressed that a proof employing these rules could always
be replaced by a (generally longer) proof of the same sequent
employing only primitive rules. Otherwise we could not be sure,
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without special proof, that these rules would not enable us to prove
sequents which were non-tautologous.

Let us see why Metatheorem I should inspire confidence in the
trustworthiness of our rules of derivation. A necessary condition of
sound argument, we insisted at the outset, was that in it we may
never pass from true assumptions to a false conclusion. Any
argument which has as its pattern a derivable sequent of the propo-
sitional calculus will, we can now see, satisfy this condition at
least. For anv such sequent, by Metatheorem I is tautologous,
which is to say that m any case where 1ts assumptions are true iis
conclusion is true also. There are no particular propositions by
which we can replace the P, ¢, R, etc.. of a derivable sequent so as
to obtain true assumptions but a false conclusion. In this way the
truth-table approach has helped to answer a fundamental question
about our rules of derivation.

To the extent that we now, it is hoped, feel 2 degree of confidence
in the soundness of derivable sequents, we may use our rules to
show the validity of actual arguments by establishing that their
patterns are provable from the rules. The truth-table approach,
however, enables us in addition to show the invalidity of argument-
patterns. Suppose a truth-table test shows that a certain sequent is
not tautologous. Then by Metatheorem [ it is nor derivable from
our rules; nor would we wish 1t to be, for this test shows that for
some assignment of truth-values to its variables we can verify all its
assumptions vet falsify its conclusion. We have only to replace the
values in this assignment by actual propositions with these values
to discover an instance of the argument-pattern in question which is
obviously invalid—true assumptions and a false conclusion. We
can, therefore, replace the search for such instances, which may
require imagination, by a truth-table test, which requires at worst
only patience.

Often the full labour of a truth-table test can be replaced by a
quick check. For example, consider

(1) P> (Q->R), P& —Q F—R.

Valid or invalid? Let us try to invalidate it, by assigning the value
Tto P+ (Q->R)’ and to ‘P & —Q’, and the value Fto * —R".
If P& —Q =T, then ‘P’ and ‘ —Q’ must both take value T,
whence P=T, Q =F. If —R=F, then R=T. But for these
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values, we do get F-s- (- K} = T. In other words, the assignment
P=T, Q="F, K="T gives the value T to both assumptions and
F to the conclusion, thus showing without the full eight-line fest
that the sequent is not taviclogous. On the other hand, consider

(2) P~(Q-=R.LP& —RV —0.

When we attempt to invalidate (2) by taking P& — K =T,
— @ =F we obtain P =T, R=F, =T, But for this assign-
ment e (- Ry = F, This shows that no assignment of truth-
values can render both assumptions true and conclusion false; hence
the sequent is tautologous, and we can proceed to seek a proof of
it from our rules.

A final word about the paradoxes of material implication (compare
Section 2} in view of the matrix for ‘- " given in Section 3, we rate
a conditional P - ( as true if its consequent § is true whatever the
truth-value of iis antecedent P: and we rate a conditional F - @ as
true if its antecedent P 1s false whatever the truth-value of its con-
sequent (. The results 50 and 51 can be seen as simple refiections,
in sequent form, of these facts, and can be accepied as safe patterns
of reasoning given this understanding about the truth-value of
‘>’ By Metatheorem I, they are tautologous, and so wili not lead
us from a true assumption to a false conclusion. In fact, “ P+ @’
differs from “if P then Q' (in the ordinary sense of these words)
precisely to the extent that < P @ 1s a truth-function of P and §—
has its truth-value compiletely determined by those of P and O—in
a way that “if 7 then @’ is not. What they have in common,
however, is the all-important feature that both are reckoned false
in case P is true and O false: it is a necessary condition for the truth
of “if P then Q’ that it is not both the case that P and not Q; but
this condition is both necessary and sufficient for the truth of
‘P @’ asits equivalence to * —(P & — Q) reveals.

EXERCISES

1 As a further exercise in proof-discovery, and because we need the
results in the next section, prove the following sequents:

(P& QFP>Q

(b) —P&Q+P>Q

(¢) —P&~QF+P>Q
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(YP& -QF —(P&Q)
() ~P&QOF (P& Q)
(/) —P&—~ Qv (P&
EIF& —~QrFPv

() —P& OFPV O
(GP& QP O
(VP& —QOF —(P<> O)
(kY —P & QF —(P-<> 0)
() P& —QFPe> (O

Z Show the invzlidity of the following patterns of argument by finding
an assignment of truth-values to the variables such that the
assumption{s} are all true and the conclusion false:
(@yP& Q- R+ P> R
(BYyPor OQvR:PsQ
(S P>Q, F>FR+ Q>R
(dYP>R O RtP>(
ey P> (0> R}, O, —R F
(1P —Q Q<> —R Rt>» ~5F P> 8

5 THE COMPLETENESS OF THE PROPOSITIONAL CALCULUS

The attentive reader will no doubt have noticed that, though in the
last section 1 showed that all derivable sequents were tautologous,
it remains an open question whether the converse holds: whether,
that is, all tautologous sequents are derivable from our rules. The
burden of this section is to show that this is so. The importance of
the result lies in the fact that it provides an answer to an outstanding
question raised at the outset of the chapter: in what sense can we
regard our rules as complete? In view of what we are about to
prove, they are complete in the sense that they afford proofs for all
tautologous sequents. Hence, if we added rules which enabled us to
prove sequents not already derivable, these could only be non-
tautologous sequents, which on intuitive grounds we should not
wish to regard as sound patterns of argument: for there would be
for them an assignment of truth-values making the assumptions all
true and the conclusion false.

The proof that foliows is rather involved. We prove as
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Metatheorem 11 that all tautologous wfis (rather than seguents)
are derivable as theorems. The proof of this proceeds by a lemma,
or awdhiary result, which is required on the way. Metatheorem 11,
that all tautologous sequents are derivable, follows fairly easily
from Metatheorem 1. We finally draw certaio corollaries from these
metatheorems, and discuss the propositional calculus in the light of

the results.

Metatheorem I All tauiologous wffs are derivable as theorems.

Outline of proof. We select 2 wif A which by hypothesis 1s tautolo-
gous under a truth-table test. A may, of course, be of great length
and complexity; all we know of it is that for every assignment of
truth-values to 1ts constituent variables it takes the value T. Our
task is to show how a proof of such a wi as a theorem, using only
our ten rules of derivation, can m general be found. We do this
essentially by imitating in the required proof the truth-table test
itself. As our lemma we show that corresponding to each line of a
truth-table test on any wif a derivable sequent can be written down:
the assumptions of the sequent are the variables in the wif given,
appearing either negated or non-negated according as the variable
has the value F or T in the assignment in question; the conclusion of
the sequent is the wif being tested, appearing cither negated or non-
negated according as it takes the value F or T for the assignment in
guestion. We then show how, in the case of a raurologous wif A,
we can use the derivable sequents vielded by the lemma to derive A
as a theorem.

Proof.

Lemma. Let A be any wif, containing the propositional variables
Vi ...V, and consider some assignment of truth-values to
Vi, ...V, For each such variable V;, let W, be either V, or
—V,;, according as V; takes value T or F in the given assignment.
Then we can derive either

Wi, .., W, FA
or
Wy, oo, Wk —A
according as A takes value T or F for this assignment.
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Example. Suppose Ais* —FP = — (v R’, and consider the assign-
ment F = F, ¢ =T, R = F. For this assignment. the wiis W, are
‘P’ {since P =F), " O (since ¢ = T}, and * — R (since K = F),
For this assignment, ‘ —FP - — O v R’ takes value F, as a test
quickly reveals. Hence by the lemma the second alternative appiies,
and

—FP, O, —RF—~(~Pep — Ov Rj

is a derivable seguent,

Froof of lemma. The technique of proof is related to that emploved
in the proof of Metatheorem I, and again resembies mathematical
induction. We show: {a) that the lemma holds in case A is the
shortest possible wif, namely a propositional variable; and (B) that
if the lemma holds for wifs B and C, then it also holds for —B,
B+ C B&C BvC( and B<—C. itfoliows from (o) and (8) that
the lemma holds for any wf, since any wff is constructed, in virtue
of the formation rules in Section 1, out of propositional variables by
introducing in a systematic manner comnnectives such as © — °
a7 &Y and f s

(e} Suppose that A is a propositional variable V. There are only
two possible assignments to V, namely V = Tand V = F. Consider
the assignment V = T; then A, being V, takes value T itself. We
have to show, therefore, that

ViV
is derivable. This 1s immediate by the rule A (cf. sequent 29).
Similarly, if V = F, then A, being V, takes also value F, and we
have to show that
—VE -V

is derivable. This is immediate by rule A, as before.

(B) Suppose that the lemma holds for wffs B and C. We are to
show that it holds for —B,B=+C,B& C,BvC, and B <> C. We
consider the cases in turn.

(i) —B. LetV,, ..., V, bethe variables in B, and suppose, ﬁ\rst,
that for a given assignment B takes the value T. For this assignment
—B will take the value F. By hypothesis, the lemma applies to B,
so that
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W, ..., W, B

is derivable, where W, ...W, are related to V, ...V, as
described in the lernma, We have (o prove that

W, ... W, F——B

is derivable. But this is immediate from the proof of the given
sequent, by one step of DN. Suppose, second, that for a given
assignment B takes value F, whence —B takes value T. By hypoth-
esis, the lemma applies, so that

W, ..., W, F—B

is derivable. But this is exactly the seguent we need to prove (o
show that the lemma applies to —B.

(ii) B> C. Let U, ..., U, be the variablesin Band V,, . . ., ¥V,
the (not necessarily distinct) variables in C. We have to consider
four cases, according as. for a given assignment to U, ... U,
V,...Vp, B=T and C=T. B=T and C=F, B=F and
C=T orB=Fand C=F.

(a) Suppose that B = T and C = T. Then, by the = " matrix,

B-» C = T. By hypothesis, we can derive

Wy, .., W,FB
and

X . X HC,
where Wy, . . ., W,are related to U,. .. .. U;, and X, ..., X, to
Vi, ..., Vi as described in the lemma. We have to prove that

W, .. LW, X, . .. X FB>C

is derivable. Now from the proofs of the given sequents we can
readily construct, by a step of &I together with a renumbering of
lines where necessary, a proof of

Wi .. W W, X, .., X FB&C.

A step of SI, using 2.4.1(a) (P & QO+ P+ (), yields the desired
sequent.

(b) Suppose that B=T and C=F. Then B>~ C = F. We
have now as derivable
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and
Fyoooa Ak —C,
and we are to show that
Wy oo W X, L X (B O)
is derivable. A step of &1, as in (@), followed by SI using 2.2.5(g)
(P& —QF —(Fs () suffices.
{¢) Similar to {¢) and (b}, using SI with 2.4.1(b).
(d} Smmilar to (a) and (b), using SI with 2.4.1(c).

(1) B & C. We consider four cases, as in (i), and use the same
notation.

&1 suffices to obtain, from
Wi ..., W,FB
and
Ky ooy, Xp b C
Wi, oo WX, L X FB&C
(b) Suppose B=T and C= F. Then B & C = F. Employ
&1 and SI with 2.4.1(d) to obtain —(B & C) from B & — C.
(¢) Similar to (b), using SI with 2.4.1(e).
(d) Similar to (b), using SI with 2.4.1(f).

(iv) Bv C. The four possible cases are covered in turn by using
SI with 1.3.1(e), 2.4.1(g), 2.4.1.(h), and 1.5.1(f) respectively.

(v) B~—-C. The four possible cases are covered in turn by using
SI with 2.4.1()~(1).

(o) and (B) together show that we can, in our proofs, imitate the
steps of the truth-table evaluation of a wifl for a given assignment to
its variables. Consider again the example that follows the statement
of the lemma. In virtue of (a) we can derive all three sequents

—PF—p
o+rQ
—RF —R.
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For the given assignment, * — @ takes value F, whence by (8) (i)
we can construct a proof of

OF— —0.
For the given assignment, * — v R " takes vaiue F, whence by (8)
(ivy we can construct from the given proofs a proof of

0, —R+ —(—QvR).
Finally, for the given assignment, * —F > — 0O v B’ takes value F,
whence by (B) (11) we can construct {rom the given proofs & proof of

~P, 0, ~RF—(—P>—QVR),

which is the sequent to be derived according to the lemmsa. Thus
(o) and (B) together can be seen to vield the lemma in full generality,

In order to prove Metatheorem II from the lemma, let A now
be a rautologous wil, containing the variables V,, V,, . . ., V,. Since
A is tautologous, it takes value T for aff assignments to its variables,
whence, by the lemma, we can derive all sequents of the pattern

W, ... W, FA,

where W, ... W, are negated or non-negated versions of the
variables V;, . . ., V,,. There will be 2" such sequents, corresponding
to the 2" possible assignments.

Example. ‘P & Q- P’ is a tautology, whence by the lemma we
can derive all four sequents

WP, QFrP& QP

P, —~QrP& QP

iy —P, OFP& Q> P

(V) —P, —QFP & QP

To construct a proof of A as a theorem, we begin by n steps of

TI, introducing successively V;v —V, V,v—V, .. V. v -V,
(Theorem 44). Then, preparatory to steps of VE, we assume V,,
—Vy, Vg, =V, .., V,, —V,. By SI applied 2" times, using the
2" sequents obtained from the lemma, we obtain A as a conclusion
from the various assumptions in those sequents. Finally, by a
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succession of steps' of VE, we eventually ohtain A resting on no
assumptions, i.e. s a theorem. This proves the metatheorem.,
Example continued. In the case of ‘P & @ -P°, the proof as
described goes as follows:

(I} Pv—P Tt 44
(2 Ov—0 TI(S) 44

i P A
4 (4)—P A
)¢ A
(6) — 0 A

S (M P&O>P 35SIG3)
6 ®)P&O>P 365 (i)
S (P& Q0P 45SI (i)
6 (10)P& Q> P 465 (iv)
(IDP& QP 13.7.49vE
(12) P& QP 138410 vE
(13) P& QP 2511612 vE

3

It should be clear from this example* why in general the steps of
VE gradually reduce the number of assumptions on which A rests
until, when the last substitution-instance of the excluded middie
law is used, there are no assumptions left at all.

Metatheorem 111: All tautologous sequents are derivable.

Proof. Let Ay, ..., A, B be a tautologous sequent. Then we
know that its corresponding conditional

Ay .. (A,>B)..)

is also tautologous (see Section 4). Hence by Metatheorem II this
conditional can be derived from our rules as a theorem. We can
derive the given sequent, therefore, as follows. First, assume
Ay ... Ay By T, introduce the corresponding conditional as a
! How many such steps in general? The keen student should confirm that
2n-1 L 2n- o - 1 steps will suffice.

*.To avoid a possible misunderstanding: of course ‘P & Q0 - P’ is easily proved
without all this fuss; it is simply taken here as an illustration of a tautology in

two variables * P’ and ‘ @ ’—any other, however Jong and cumbersome, would
have done as well. i
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new line. By » steps of MPP, we obtain B as conclusion from
Ao, .. .. Ay, thus deriving the desired sequent.

Coroliary I Anv sequent is derivable if and only if it is tauiclogous.
This Corollary simply puts together Metatheorems I and 1L

We say that a logical system such as the propositional calculus is
complete if all expressions of a specified kind are derivable in it.
If, in particular, we specify foautologous sequeni-expressions, then

from Metatheorem 11 we have at once

Corollary 11 The propositional calculus is compleie.

Comparing the last section with the present one, we might observe
that a consistency result, such as was obtamned in Section 4, is
typically to the effect that only expressions of a certain kind are
derivable (in the case of the propositional calculus, only tautologous
sequent-expressions), whilst a completeness result, such as has just
been obtamed. is typically to the effect that alf expressions of a
certain kind are derivable. Put together, as in Coroliary 1 above,
we see that our rules of derivation do not go too far, but that they
do go far enough: our rules enable us to derive exacily the tautolo-
gous sequents.

So the two very different approaches te the propositional calculus,
the derivational approach and the truth-table approach. coincide
after all. By truth-tables, we separate tautologous sequents from
the rest; by derivation, we separate derivable sequents; either way,
however, we finish with the same totality of sequents. This may
raise doubts as to the uulity of the derivational approach. For, as
we have said, a truth-table test is entirely mechanical: why concern
ourselves with the search for proofs when the same job can be done
by mechanical means?

There are several replies we can make. First, even at the propo-
sitional calculus level, in practice the truth-table method becomes
cumbersome for four or more variables; it 1s often easier to search
for a proof, when we suspect a sequent to be tautologous. Second,
the lines of a proof follow in many cases the methods of reasoning
which we ordinarily and unthinkingly apply (for this reason, our
derivational approach is sometimes called narural deduction) whilst
a truth-table test has a somewhat artificial character. Third, if we
have any grounds for wishing to refect a tautology as not a logical
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principle (for example, the law of excluded middle has often been
guestioned by philosophers), then an explicit proof from our rules
reveals what has to be abandoned and what may be retained in
view of such a rejection, which a truth-table test does not. Our
approach by rules shows something of the inierdependence of results,
whilst a truth-table test is applied separately to each sequent-
EXPression.

At more complex levels of logic, however, such as that of the
predicate calculus to which we turn in the next two chapters, the
truth-table approach breaks down; indeed there 1s known to be no
mechanical means for sifting expressions at this level inte the valid
and the invalid. Hence we are required there tc use lechnigues akin
to derivation for revealing valid sequents, and we shall in fact take
over the rules of derivation for the propositional calculus, expanding
them to meet new needs. The propositional caleulus is thus un-
typical: because of its relative simplicity, 1t can be handled mech-
anically—indeed, in view of Metatheorems Il and I we can even
generate proofs mechanically for tautologous sequents. For richer
logical systems this aid is unavailable, and proof-discovery becomes,
as in mathematics itself, an imaginative process.
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CHAPTER 3

The Predicate Calculus 1

I LOGICAL FORM: "ALL’ AND ‘SOME’
Our ambition (compare Section 1 of Chapter 1} is to state exactly
the conditions of valid argumeniation; to inspire the reader with
the correct degree of humility, it is now time to see how very little
we have so far achieved.
Consider the two arguments
(1) If he is at home, his hat will be in the hall; his hat is not
in the hall; therefore be is not at home.
(2) If Napoleon was Chinese, he was Asiatic; he was not
Asiatic: so he was not Chinese.
With the aid of the propositional calculus, we see at once that both
arguments are sound since they have as & common pattern

(B) P> 0, —0F—P,

which we can show to be a derivable sequent. Many of the sequents
so far derived exhibit in this way the pattern, or logical form, of
quite familiar, everyday arguments. But there are many, equally
familiar, arguments which are undoubtedly sound but whose
soundness is not revealed at all by our present methods. I remind
the reader of two arguments given at the outset of the book:

(4) Tweety is a robin; no robins are migrants: therefore
Tweety i1s not a migrant,

(5) Oxygen is an element; no elements are molecular; there-
fore oxygen is not molecular.

We agreed that, like (1) and (2), (4) and (5) have something in
common which we called their logical form; but by the propositional
calculus notation the only sequent we can write down for them is

(6) P, OF R,

a patently invalid sequent.
It is worth comparing (1) and (2) with (4) and (5). In (1) and 2)
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we recognize the conclusion of the arguments as the negation of the
proposition appearing as antecedent of the first premiss, and we
recognize the second premiss as the negation of the consequent of
the first; it is this recognition that vields the pattern (3}, But in (4)
and (5) there is no such re-identification of propositions, the twe
premisses and the conclusion are all distinet, so that all we can write
dowrn 1s {6). Inasmuch as (4) and (5) are sound, 1t is in virtue of the
internal struciure of the propositions that they are so, whilst to show
the soundness of (1} and (2} 1t suffices to consider the propositions
as units without looking nside thermn. The propositional calculus
reveals validity when this depends on propositional siruciure glone
our units, at this level, are propositions themseives. Clearly what
we need now are tools which enable us to break into propositions,
to reveal their inner structure, if we are to pursue further the search
for validity conditions. These tools are provided by the predicare
caiculus, the subject of this and the following chapter.

When we tackled (4) and (5) earlier, we reached the following
partial analysis of their common logical form:

(7y mhas property F; nothing with Fhas property G ; there-
fore m does not have G.

We clearly shall need in our new formal language special symbols to
replace proper names (" Tweety ', the proper name of a bird;
‘oxygen ', the proper name of & chemical element). Let us employ
‘m’, ‘n’, ..., for tlus purpose, as in (7). Also we shall need
symbols to replace property-expressions or predicates (‘ is a robin ’,
‘is a migrant’, ‘is an element’, ‘is molecular’). Let us employ
capitals * F’, *G’, “H’, ..., again as in (7). ‘m’, ‘n’, ..., we
call proper names, * F', * G°, ..., we call predicate-letiers.

To say that m has property F, we agree to juxtapose the symbols
‘F’and ‘m’ in that order. We write

Fm.
* Fm’ thus becomes our pattern for the many simple sentences
which have proper names as subjects: * Socrates is mortal *, * Napol-
eon was Chinese ’, ‘ courage is desirable ’, and so on.
To say that m does not have G is now easy: for to say that m has
G, we write  Gm’, hence for ‘ m does not have G’ we write
—Gm,
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borrowing, as we shall freely allow ourselves to do, symbols from
the propositional calculus already developed.

This caters for the Arst premiss and for the conclusion of (7),
but we are left without symbols for the expression ‘nothing ™ in
the second premiss. We could simply introduce a symbol {say ‘ E”)
for this, and write * E(FG)’ for ‘ nothing with F has & °: more or
jess this tactic was adopted by traditional logic, stemming from
Aristotie.t In contemporary logic, a more flexible and subtle device
is wsed, which is, however, harder io learn. We approach the
probiem obliquely by examining first ‘everything * rather than
‘ pothing .

From ‘“no robins are migrants * we obtained " nothing with the
property of being a robin has the property of being a migrant .
Similarly, from ‘all robins are migrants’ or ‘every robin is 3
migrant * we obtain  everything with the property of being 2 robin
has the property of being a rmigrant . Using * F’ and * G~ as before,
we have

{8) Evervthmg with F has G.

The step we must now take is to see that (8) amounts to a kind of
conditional, namely:

{9} Evervthing, if it has F, has G,
or, perhaps better,
(10) Take anything you like: then if it has F, it has G.

To say that everything which has F has G is to say that, for any
object whatsoever, if it has F it has G. To say that all robins are
migrants is to say that, pick what object vou will, if it is a robin then
it is a migrant.®

We can render (9) and (10) symbolically by adopting from alggbra

the convenient device of variables, “ x’, “y’, “z°, ... . In place of
(9), we write first

* For a fuller discussion, see Chapter 4, Section 4.

¥ Here is a * proof . Suppose, first, that all robins are migrants, and arbitrarily
choose some object, sav a haystack. Then it is true of the haystack that if it is
a robin it is a migrant. Conversely, suppose that not all robins are migrants.
Then some robin is not a migrant. Pick one: then for this object at least it is
pot true that if it is a robin it is a migrant. In this way we see in general that (8)
is true and false in exactly the same circumstances as {9} and (10).
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(11} For any x, if x has F then x has &,
“x has F7 we naturally abbreviate to * Fx°, “x has & similarly to
“Gx’,and for “if ... then ... we use ‘=~ as before. This gives
{12) For any x1 Fx = Gx.
We finally agree to write * for any x* by enclosing ‘ x * in brackets,
and obtain, as a fully symbolic version of (8).
{13} (N Fx = Gx).

The full advantages of adopting the device of variables will
become clearer as we proceed. For the moment it will suffice to
think of them as operating somewhat like the pronoun ‘it . When
we compare (11) with (10), we observe in fact that “ x” in (11} has
twice replaced ‘it " in (10). The abbreviation “ (x)’ for * for any x '
which appears in (13) is called a universal quantifier.

So “ Everything with F has G~ becomes * (x)(Fx -+ &x)’. Now,
what of * nothing with £ has G *7 Reflection shows that to say that

nothing with F has G is just to say that everything with F lacks G,
or, in explicitly conditional form,

(14} Take anything vou like: then if it has F it does not have
G.

This becomes in turn

(15 Foranyx: Fx » —Gx
and

(16) (x)(Fx > —Gx),

which last is in full symbolic dress.
As a more complex example, suppose we wish to analyse

(17) No men are both doctors and fishmongers.

To obtain the version in terms of properties, we first write

(18) Nothing with the property of being a man has the
property of being both a doctor and a fishmonger.

Let F be the property of being a man, G the property of being a
doctor, and H the property of being a fishmonger. Then we obtain
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{19y Nothing with F has both ¢ and H,

{20y Take anvthing vou like: then if 1t has F 1t does not have
both & and H,

(21} Forany x: Fx - —(Gx & Hx),
whence
(22) (xHFx = —{(Gx & Hx)).

The device of the vnoversal quantifier enables us to render info
logical notation many sentences, as they occur in arguments, which
contain such words as “all’, “every ", “any’, ‘ evervthing * and also
no’, ‘none’, ‘nothing’. Another group of idioms, however,
plays a large role in the reasoming situation, a group centering on
‘some ". Consider, for example, the sound argument

3

(23) All Germans are hilarious; some felons are German;
therefore some felons are hilarious.

If we put * F’ for being a felon, * G~ for being German, ‘ H~ for
being hilarious, then the first premiss evidently is expressed by
C(xNGx - Hx}'. It is unclear, however, how we shouid handle the
second premiss and the conclusion. We may reflect that to say that
some felons are German is to say that it is not the case that no
felons are German. If ‘no felons are German' becomes *(x)
{(Fx— —Gx)’, then ‘1t is not the case that no felons are German~
becomes © — (x)}{(Fx > —Gx) . Hence we can handle ‘ some ’ with
the aid of the universal quantifier again.

Though this analysis is perfectly correct, it proves more con-
venient for managing arguments to employ a special symbol in
dealing with ‘ some ': the existential quantifier.

Just as

T
is to mean ‘ take any x: then . .., so we write

(H )
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to mean ‘ there 1s an x such that . . ., or * an object x can be found
which ... “(dx)...)" affirms that at least one thing is such
that . ... MNow to say that some felons are German is {o say that

at least one object can be found such that it has both property F
and property G In general, to say that

(24) something with F has ¢

is to say that something has both F and &, and so becomes
{25) there is an x such that x has F and x has G,

or, in full symbolic dress,
(26) (Ix)Fx & Gxj).

Another form of words common enough to deserve special
mention is ‘ something with F has not G’ or *there is something
with F but not G’ { some Frenchmen are not generous’, ‘there
are Frenchmen who are not generous’}. This becomes, evidently,
‘ there is an x such that x has F and x has not &, or

(27) (Bx)(Fx & —Gx).

It is a common mistake to render * some Frenchmen are generous ’
by ‘ (Hx)Fx -~ Gx}° rather than the correct ‘ (Hx){(Fx & Gx)’, by
assimilation to the case of * all Frenchmen are generous’, which is
properly rendered as a kind of conditional. But ‘ (Hx)(Fx - Gx)°
affirms that there is something which, if it is French, then it is
generous, and this will be true even if there are no Frenchmen,
which ‘ some Frenchmen are generous’ certainly is not.

The task of translation into the quantifier-notation might be
summarized thus: first, render into a sentence about properties, and
employ predicate-letters for these properties; second, introduce
variables; third, introduce propositional calculus connectives and
quantifiers. The four commonest forms, after the first step is
complete, together with their final translations, are exhibited in the
following table:

1 Always, in logic, we take ‘ some * to mean ° at least one’. Thus ‘ some felons
are German ’ will count as true if there is only one German felon, and also true
if all felons are German. See Chapter 4, Section 3, for the development of a
device for expressing * at least two .
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Evervthung with F has & Mothing with F has @
(W Fx = Gx) (X Fx oo —Gx)
Something with F has & Something with F has not &
(Fxi(Fx & Gx) {(dx)Fx & —Gx)

Traditional logic recognized these four forms of proposition. but
no more. ks greatest limitation {apart from perhaps the virtual non-
recognition of the propositional caleulusyis just this lack of expressive
power for other varieties, and the main merit of the quantifier-
notation combined with variables and predicate-letters is that it
enormonsly increases our powers of sentence-analysis. In the first
place, we can handle reiarions as well as properiies. Consider
‘ Prince Philip is a parent of Prince Charles . Unlike * Prince
Philip 15 generous ', say, which we render * Gm " (using “m - for
*Prince Philip”), the new sentence contains two names, and a
relation is affirmed between two objects rather than a property
affirmed of one. Let us use * »n " for * Prince Charles " then we can
write * Pmn ° as shorthand for “m is parent of n". * Pmn " will be
true, but * Paum " (‘' Prince Chariles is a2 parent of Prince Philip ")
false, se that when two proper names follow a predicate-letter order
becomes material.

A predicate-letter followed by one name expresses a property: a
predicate-letter followed by two names expresses a relation.
Examples of relational sentences in ordinary speech which we can
handle this way are: “m loves ', “m 1s bigger than n’, “m is to
the south of n’°, “m 1s a second cousin of n’. Transitive verbs
(at least when followed by objects), adjectives in the comparative
form, expressions of relative position, and terms for family relation-
ships, among many others, frequently express relations or occur in
relational expressions.

In the second place, we can combine this extended use of predicate-
letters with quantifiers. Let us suppose, for the moment, that our
variables ‘x°, ‘3’ ‘z’ range over people (as in algebra they are
understood to range over numbers), so that for ‘everything * we
can read ‘everyone’ and for ‘something’® ‘someone’. Then,
giving * Pmn ’ the inferpretation ‘ m is a parent of n°, we can express
‘ Prince Charles has a parent’ by

(28) (dx)Pxn
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where n is Prince Charles; this merely says that someone is & parent
of Prince Charles. To say that Prince Philip has a child, we write

(29} (BEx)Pmzx,

where m is Prince Philip, which says that there is someone of whom
Prince Philip is a parent. Again, order is essential here, because
with the same interpretation, (Hx)FPnx (" there is someone of whom
Prince Charles is a parent ') is, at the date of writing, false, whilst
(28) 15 true. Similarly, (Gx)Pxm, though true like (29). concerns the
ancesiry of Prince Philip rather than his progeny.

In the third place, we can combine universal and existential
quantifiers in the same sentence. * (Hx31Pxn " savs, of Prince Charles,
that he has a parent. Suppose we wish to say that evervone has g
parent. We naturally write

(30) (M(E)Pxy

(“take any y: then there is an x such that x is parent of y 7). This
must of course be carefully distinguished from

3L MEX)Pyx,

which affirms rather that evervone is a parent of someomne, a
generalization to which there are obvious exceptions. It is also
essential to observe that the order of quantifiers is here as important

to sense as the order of “x” and “y’. Thus

(32) (Fy)(x)Pyx

affirms with evident falsity that someone is a parent of everyone,
and

(33) (Ay)(x)Pxy

affirms that someone has everyone as a parent, which is even more
obviously false.

In these last four examples, the use of distinct variables ¢ x’ and
‘y’ is essential for the required sense. Thus to say ‘ (dx)}Pxx’
would be to say that someone was his own parent, and to say
‘(x)Pxx’ would be to say that everyone was his own parent. To
express (30) without using variables, we should need ‘for any
person there is a person such that he (the latter} is a parent of him
(the former) ’; distinct variables enable us in a simple way to handle
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‘the former ™ and ‘the latter ', which again suggests a similarity
between variables and pronouns.

There 15 no reason for stopping at /wo names or variables afier 4
predicate-letter. To render, for exampie, “ Oxford is between
London and Stratford *, using * m " for  Oxtord ", * » for * London |
"o’ for ‘ Stratford ', and * B’ for the relation of berweenness, we
can write Bmno. In fact, in this book we shall rarely be concerned
with relations involving more than two objects. But theoretically
our predicate-letters mav be followed by anv (finnte) number of
names or variables,

I end this section with further illustrations of guantifier-iranslation
in progressively more complex cases.

Consider

{34) Every boy loves & certain girl.}

We detect here an ambiguity: this may mean (i) that there is some
one (very fortunate) gir! who is foved by every boy; or (ii} that for
every boy there can be found some (with luck, different) girl whom
he loves. We obtain a different rendering for each version (a further
merit of the guantifier-notation is that it makes explicit just this
kind of ambiguity). Use * B’ for the property of being a boy, * G~
for the property of being a girl, and ‘L’ for the loving relation.
Then (i) becomes ‘ there is an x such that Gx and x is loved by
every boy ’. To render * x is loved by every boy ", we think of it as
“every boy loves x '—*for all y, if ¥ is 2 boy then y loves x*. Thus,
putting together the pieces, we have

(35) (Hx)(Gx & (¥)(By > Lyx)).
On the other hand (ii} becomes * for all x, if Bx then x loves some

girl’, and to say ‘ x loves some girl * we say  there is a y such that
Gy and x loves y’. Hence we have for (i)

(36) (x)(Bx > (dy)(Gy & Lxy)).

The overall structure of (i) is ‘ something with G has H; but H is
here the complex property of being loved by every boy. The overall
structure of (it), however, is ‘ everything with ¥ has H’, where H is
now the complex property of loving some girl. (35} and (36) should
be carefully compared and contrasted.

! This attractive exampie is due to Mr Peter Geach.
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Consider next
(37y Al the nice girls love a sailor.

Another ambiguity is detectable here: does this mean (i) that, for
all x, if x is a nice girl then x loves some satlor, or (i1} that, for all x,
if x is a nice girl then x loves any satlor 7 I (i}, then, using " N~ for
being nice, ‘ & for being a girl, and * ' for being a sailor, we have

(38) (XN Nx & Gx - (Ayi{Sy & Lxy)).
If (ii), on the other hand, we have
(39) (X)(Nx & Gx - ()(Sy > Lxy)).

(Actually, T suspect that (37) means (ii).)

The occurrence of 2 conjunction as the antecedent of a conditional,
as in (38) and (39}, is typical of the analysis of * all "-sentences with
relative clauses attached to their grammatical subjects. Thus
‘everything with F which has & has H ' becomes

(40) (x)(Fx & Gx + Hx).

‘ Except "-phrases often require a similar treatment. Thus ‘ all dogs
except chihuahuas like the cold * will become

(41) (x}Dx & —Cx - Lx),

where ‘ D is for being a dog, * C’ is for being a chihuahua, and
“L’ is for liking the cold. For ‘ dogs except chihuahuas’ means
* dogs who are not chihuahuas .

“The word ° any ’~ should always dictate caution. At the beginning
of a sentence ‘any’ plays usually the part of “all’, and can be
handled accordingly. But ‘ John does not like any girls’ means, of
course, ‘ John likes no girls ’, and becomes

(42) (x)(Gx - —Lmx),

where ‘ G’ is for being a girl, * L’ for the liking relation, and ‘m’
is for John.

Careful rethinking is usually required when  only ’ is present. To
say that only men are whisky-drinkers is to say that, for any x, only
if x is a man is x a whisky-drinker, which is to say that, for any x,
if x is a whisky-drinker then x is a man (‘ only if P then @’ is
equivalent to ‘if Q then P’), which of course is to say that all
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whiskv-drinkers are men. In general, * Only things with 7 have G’
means * Everyihing with G has F'. Hence, * only men who eat nui
steaks are vegetarians ~ becomes

(43) (X)(Vix = Mx & Ex),

where * V7 is for being vegetarian, * M for being a man, and ‘ £’
for eating nut steaks: for it means the same as © all vegetarians are
men who eat nut steaks . On the other hand * rhe only men who
eat nut steaks are vegetarians * means * o/f men who eat nut steaks
are vegetarians ', and becomes

{44) (xUMx & Ex > Vx).

As much as this hinges on the simple presence of “ the "

Flexibility of mind 1s generally required for translating from
ordinary speech seniences into sentences of the predicate calculus.
WNo firm rules can be given, and practice is needed before full
familiarity with quantifiers is reached. The activity involved is one
of translation: but the formal language into which translation is
being made has a rather different syntax from that of a patural
language, and has only a narrow terminology-—logical connectives,
variables, proper names, predicate-letters, and two guantifiers. The
chief merit of the language is that, despite its notational limitations,
it has a very wide expressive power: just how wide will become
clearer as we proceed.

A final piece of terminology which will simplify some of the ensuing
discussion: let us agree to call a proposition affirming that for any
object such-and-such is the case a universal proposition:; thus a
universal proposition will be expressed in the predicate calculus by
a sentence with an initial universal quantifier; and let us agree to
call a proposition affirming that there is an object for which such-
and-such 1s the case an existential proposition ; thus an existential
proposition will be expressed in our symbolism by a sentence with
an initial existential quantifier.

EXERCISE

I Exhibit the logical form of the following sentences by translating them
into the notation of the predicate calculus (using for predicate-letters
and proper names the letters suggested):
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{a2) Susan is featherbrained

(b} Janet is featherbrained

(¢} Some women are featherbrained
(d) All women are {catherbrained
(e} Only women are featherbrained
(/) No man is featherbrained

{g} Some men are not featherbrained
{h} John is not featherbrained

() Brutus killed Caesar

() Someone killed Caesar

(k) Brutus killed someone

(7} Someone killed someone
{m) Someone killed himself

(nj No one killed himself

{c) Someone killed everyone

(p) Someone was killed by evervone

{g) There is & town between London and
Stratford

(r) Every woman owns a dog

(s) Some dogs like every woman

(1) Every featherbrained woman owns a dog
(u) Every woman owns a featherbrained dog
(v} Fido likes a featherbrained woman

(w) Some dogs like a featherbrained woman

{x) Some dogs like only featherbrained
women

(¥) Some dogs do not like any featherbrained
women

(z) Some dogs like only women who are not
featherbrained

CAIl and * Some”’

CF' "m”)
CF,n)
CWLFY
€W F
CWLF)
€M, F)
(M, FY

(K. "m’.'n’
R, r%

CK )
K’}

K7}

K"

K7

(K7}

(T ,'B’,"m’, ‘n’}
W'D, 0%

b, W', LY

CF., W,°'D’ 0"
(W' FL, D07
Cm’,"F W’ "L
(D' F L, W’ *L")

(‘D’,‘Fg,‘ W’,‘L’)

(‘D,,‘F’,‘ W’,‘L’)

(‘D’,‘F’,‘ W’,LL’)

Warning: Some of the later sentences are ambiguous and need

alternative renderings.
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7 THE UNIVERSAL QUANTIFIER

The last section affords a preliminary sketch of a2 new formal
language; we can now turn to the matter of testing arguments
expressed in it. Since part of our language is just the propositional
calcutus itself, we take over into the predicate caiculus the propo-
sitional connectives and propositional variables if we need them
—all our earlier rules continue to be of service under the under-
standing that they are extended to the new svmbolism. But we need
additional rules for the handhing of quantifiers in argument: four
such, in fact—an introduction and an elimination rule for the
universal and for the existential quantifier. We consider the universal
quantifier first.

The elimination rule for the universal quantifier is concerned with
the use of a universal proposition as a premiss to establish some
conclusion, whilst the introduction rule is concerned with what is
required by way of premiss for a universal proposition as conclusion.
It 1s heipful to bear in mind the corresponding rules for * &°, for
there is a close similarity between * & * and the universal quantifier,
as the following remarks suggest.

In particular arguments involving quantifiers, we usually have a
particular group of objects, called our universe of discourse, in mind.
For example, in algebra the variables “x 7, “y’ “z°, ... are under-
stood to range over numbers, so that our universe of discourse here
is the set of all numbers; and, in discussing (28)~(33) in the last
section, we explicitly restricted our universe of discourse to the set
of all people. Our universe of discourse, in fact, is generally the
understood range of our variables * fyttz,.

By way of illustration, let us suppose that our universe of discourse
contains exactly 3 objects (what they are will not matter) whose
proper names are “m’, “n’, and “o’. Then to affirm that every-
thing has property F will, for this universe, be to affirm that m has
F and n has F and ¢ has F. Thus

(1) (x)Fx

is intuitively equivalent, in this universe, to the complex conjunction
with 3 conjuncts

(2) Fm & Fn & Fo.
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Now by an obvious extension of &E, we could naturally derive as
conclusion from (2) any one of the conjuncts separately, Fm, Fn,
Fo. Analogously, our rule of universal quantifier elimination (UE)
will allow us to infer that any particular object has F from the
premiss that alf things have F. The rule can be seen as a natural
extension of &E, when we realize that affirming a proposition such
as (xjFx is generally a condensed way of affirming 2 complex
conjunction.

In fact, if all objects in a given universe had names which we
knew and there were only finitely many of them, then we could
always replace a universal proposition about that universe by such
a complex conjunction. It is because these two requirements are not
always met that we need universal quantifiers. For example, we
may wish to say that all natural numbers ' have a certain property
F; this amounts to saying that 0 has F, and | has F, and 2 has F,
and so on; but, there being infinitely many numbers, we are barred
from actually completing the desired conjunction, and we fall back
on the quantifier to do the job. Because our universe of discourse
may be infinite in size, we cannot say that a universal proposition
1s equivalent to & complex conjunction, but it is true that the analogy
with * &’ is intuitively very helpful.

Hence the justification for UE is that, if everything has a certain
property, any particular thing must have it, and UE will enable us
to pass from (x)Fx to conclusions such as Fm and Fn, and from
(x)(Fx + Gx) to Fm - Gm and Fn-- Gn (if everything is such that
it has G if it has F, then in particular m has G if m has F, n has G if
n has F). The rule is exemplified in the proof of the following
elementary sequent:

100 Fm, (x}(Fx > Gx)F Gm
I (D) Fm A
2 (DN Fx>Gx) A
2 (3) Fm—» Gm 2 UE
1,2 (4) Gm 1,3 MPP
! By the natural numbers are meant the numbers 0, 1, 2, 3, etc. They are some-

times called also the non-negative integers, the positive integers being the numbers
1,2,3, etc.
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100 exhibits the form of such obviously sound arguments as the
logically famous

{3} Socrates 1s a man; all men are mortal; therefore Socrates
1§ mortal

(letting “ m° be Socrates, * F" be being a man, and ‘ G’ be being
mortal). We are now also in a position to validate the Tweety and
oxygen arguments ((4) and (5) of the last section). Their common
form (compare (7) of the last section) is proved as the foliowing
sequent:

WY Fm, (0 Fx 5 —Gx) b —Gm
i (1} Fmn A
2 A (xFx s —Gx) A
2 3 Fm- —Gm 2 UE
.2 (4) —Gm 1,3 MPP

The application of UE at line (3) is exactly like its application at the
same line in the proof of 100: if everything with Flacks G, then in
particular if m has F m lacks G.

The rule of universal quantifier introduction (Ul) is designed for
establishing as conclusions universal propositions. By the analogy
with * & °, to establish, say for our earlier universe of 3 objects, that
everything has F, we should establish first that m has F, that » has
F, and that o has F. Then, by an obvious extension of &I, we are
sure that everything has F. This technique will be of no avail,
however, if our universe is infinitely large or if we do not have names
for all objects in the universe. We evidently require a new device.

Think of what Euclid does when he wishes to prove that ali
triangles have a certain property; he begins ‘ let ABC be a triangle °,
and proves that ABC has the property in question; then he con-
cludes that all triangles have the property.! What here is * ABC 9
Certainly not the proper name of any triangle, for in that case the
conclusion would not follow. For example, given that Khrushchev is
bald, it does not follow that everyone is bald. It is natural to view
“ABC’ as the name of an arbitrarily selected triangle, a particular
triangle certainly but any one you care to pick. For if we can show

! See, for example, Euclid, The Elements, I. Propositions 16-21,
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that an arbitrarily selected iriangle has F, then we can soundly draw
the conclusion that all triangles have F.

We introduce, therefore, the letiers ‘2.4 ' ‘¢ . . to be narmes
(nof proper names) of arbitrarily selecied objects in the universe of
discourse, and call them for short arbitrary names. Ther., with
important reservations to be made later, if we can show that Fa (an
arbitrarily selected object has F) then we can conclude that (v)Fx.

Inefiect. a proof of Fa is tantamount to @ proof of ali the required
conjuncis in the desired ' conjunction” (x)Fx. In the 3-ohject
universe above, to prove Fa is (o prove Fm. Fn and Fo. For we
can take m as the arbirrarily selected a. and s, and o. In the case
where the universe s infinitely large, proving Fe is tantamount io
proving infinitely many conjuncts, for we can select as @ any object
in the universe,

Hence the justification for Ut s that, with certain reservations, if
an arbifrarily selected object can be shown to have a property.
everything must have it, and UT will enable us to pass from premisses
such as Fa or Fhto conclusion (x)Fx, and from Fa— Ga or Fb— Gh
to (x)(Fx - Gxj (if an arbitrarily selectec object has G if it has F,
then everything with F has G). With the adoption of new letters
“a’, " b7, e’ goes a natural extension of UE: from (X} Fx - Gx).
for example, we can conclude not only that Fm = Gm but also that
Fa > Ga, Fb— Gb, and so on {arbitrarily selected objects from the
universe are after all particular objects in the universe, so that what
holds of everything holds of them too). The rule Ul and this
extension of UE are both illustrated in the following proofs:

102 (W Fx = Gxy, (0H{Gx = Hx) F()(Fx - Hx)
] (1) YN Fx = Gx) A
2 (D ONGx> Hx) A
| (3) Fa - Ga 1 UE
2 {4y Ga-> Ha 2 UE
1,2 (5) Fa—-» Ha 3,4 SU(S) 1.2.1(H)
1,2 (6) (x)}(Fx~» Hx) 5Ul
To prove that (x)(Fx- Hx), we aim to prove Fa-» Ha (to prove that

everything with F has H we aim to prove that an arbitrarily selected
object with F has H). From assumptions (1) and (2) by UE in its
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newly extended form we have (3} Fa-» Go and (4) Gg = Ha: the
desired Fa - Ga now follows by propositional calculus reasoning,
steps embodied in a sequent from Chapter 1, which we here
abbreviate by SI. (Strictly, we have not proved that SI is obtainable
as a derived rule for the predicate calculus, but the extension of our
demonstration in Chapter 2, Section 2, to the new formal language
is in fact immediate.) This proof is typical of predicate calculus
work where both assumptions and conclusions are universally
guantified: we drop the universal guantifiers from assumptions,
changing variables to arbitrary names, apply propositional calculus
steps, and finally reintroduce & universal guantifier by 1JI. Here 1s
another example.

103 (O(Fx = Gx), (X3 Fx F{(0OGx
i (3 () (Fx - Gxy A

2 (2) (x)Fx A
1 (3 Fa>Ga i UE

2 (4) Fa 2 UE
1.2 (5) Ga 3,4 MPP
1,2 (6) (x)Gx 5 UI

To prove {x)Gx by Ul we aim for Ga, which follows by MPP from
Fa-» Ga and Fa, obtainable from the assumptions by UE.

As already indicated, some restriction has to be placed on the free
use of UI, if fallacies are to be avoided. The following illustration
should help to show why. Suppose that, in a geometrical context,
we arbitrarily select a shape ¢ and assume (i) that it is acute-angled
(that is, that none of its angles are as great as a right angle), and (ii)
that it is rectilinear (that is, that it is formed by straight lines); then
by elementary geometrical reasoning we can conclude that ¢ is a
triangle. Expressing (i) by “ 4a’, (il) by * Ra’, and the conclusion
by “Ta’, we have that Ta follows from 4a and Ra. Hence, by a
step of CP, given that Aa, Ra->Ta. If we now apply Ul as it stands,
from Aa we can-conclude that (x)(Rx - Tx}—given an arbitrarily
selected acute-angled shape, then all rectilinear shapes are triangles.
The conclusion is evidently false, yet we can make the assumption
true by simply selecting an acute-angled shape.

The fallacy involved here may be described by saying that we have
no right to pass from the conclusion Ra - Ta to (x)(Rx - T), just
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because that conclusion rests on the special assumprion CoOnCerning
a that 4a. We have in fact proved that if our arbitrarily selected
shape g is rectilinear then it is triangular, but only on the assumption
that 1t is acute-angled as well. We can avoid this faliacy if, before
we apply Ul in passing from a proposition about 2 to a universal
conclusion. we make sure that the assumptions on which the
proposition about « rest do not include a special assumption
concerning ¢ itself; that is to say that, before we apply UL we
should make sure that * a * does not appear in any of the assumptions
on which the conclusion rests. This blocks successfully the fallacious
move indicated above. For the conclusion Rag - Tu rested on the
assumption Ae, in which ¢ 1s mentioned, so that Ul cannot be
applied.

The applications of Ul given earlier obey this restriction, as the
reader should check for himself. For example, in the proof of 103
we applied Ul to the conclusion Ga to obtain (x)Gx; but the
assumptions on which Ga rested were (x)(Fx - Gx) and (x)Fx, in
neither of which does ‘ ¢ appear. The restriction is easy to observe

in practice: before applving Ul to “. .. a ...’ in order to obtain
‘(. .x...)°, we go through the assumptions on which
‘...a... reststo ensure that ‘ ¢’ nowhere appears in them.

The most direct form of the fallacy is observed in the following
‘proof ’:

1 (1) Fa A
1 (2)(x)Fx 1UI

For example, taking ‘ F’ as being odd, we may arbitrarily select, in
the universe of numbers, an odd number, sav 3, so that Fa becomes
true; but it evidently does not follow that all numbers are odd, which
is false. The move from (1) to (2) is prevented by the restriction,
since (1) depends on irself, in which ‘ ¢~ appears.

We have not, in fact, in this section given precise formulations of
the rules UE and UI; this is delayed until Chapter 4, Section I,
where we present detailed formation rules for the predicate calculus
analogous to those in Chapter 2, Section 1, for the propositional
calculus. But the present intuitive account should enable the
student to understand the elementary proofs given in the text and
to work the exercises that follow. It is only in more sophisticated
work that we require an exact statement of the gquantifier rules.
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EXERCIZES

1

Translate the following arguments into the symbolism of the predicate
caiculus, and then show their validity by UE and propositional calcuius
rujes:

() Facques is a Frenchman: all Frenchimen are niggardly: therefore
Jacques is niggardly. (‘m . " F’, "N

(b} Jacques is miggardly; no Frenchmen are niggardly; therefore
Jacques is not a Frenchman. Cm’, N’ “F")

{c) Willilamn is not a Frenchman; only Frenchmen are BVaricious:
therefore William is not avaricious. (n’, “F', " 4 y

(} Al male nurses are sympahetic: William is not sympathetic:
William is male; therefore William s not & nurse. ¢ M AN
& SV 7’ & n 9)

{e} All Frenchmen except Parisians are kindly; Jacques is & French-

man; Jacques is not kindly; therefore Jacques is a Parisian. (* Fo,
kP’s CK?, 6m9)

2 (i) Using UE and Ul together with propesitional calculus rules, show

the validity of the foliowing sequents:

(@) (XY Fx > Gx), (HGx > — Hx) b (x)NFx > — Hx)

(b)Y ) (Fx  —Gx), (XN FHx > Gx) b (x)}(Fx - — Hx}

(€) (X}Fx > Gx}, (X)Hx > —Gx) b (x)(Fx > — Hx)

{d) (XU Gx > — Fx), (x)(Hx > Gx) b (x)(Fx > — Hx)
(&) (X)(Fx > Gx) ¥ (x) Fx > (x) Gx

() () (Fx v Gx = Hx), (x)—Hx } (x)— Fx

(ii) For each of the following arguments, indicate which of the sequents
(a)-(d} above exhibits its logical form (thus establishing the validity
of the arguments):

{ay No Germans are Frenchmen: all Huns are German; therefore
no Frenchmen are Huns.

(b) No Frenchmen are fanatics; all Huns are fanatics; therefore no
Frenchmen are Huns.

{c) All Huns are fanatics; no Frenchmen are fanatics; therefore no
Huns are Frenchmen.

(d) All Germans are fanatics; no fanatics are histrionic; therefore
no Germans are histrionic.
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3 THE BEXISTENTIAL QUANTIFIER

As the universal quantifier is related 1o © &, so is the exisiential
quantifier to ‘v '. In the universe of 3 objects discussed in the last
section,  (x) Fx~ meant the same as ' Fm & Fn & Fo’. Now io say
that there is ar least one x with F in this universe is to sav that
either m has F or n has F or ¢ has F. Hence here ‘ (3x)}Fx ’ means
the same as “Fmv Fnv Fo'. In the case of an infinitely large
universe, say that of the natural numbers, to say that there is z
number with F or that some number has F 1s o say that either ¢
has F or 1 has F or 2 has F or.... As we need the universal
quantifier because we cannol write down an ‘ infinite conjunction °,
so we need the existential quantifier because we cannot write down
an ‘ infinite disjunction ’,

Accordingly, the two rules for the existential guantifier can be
seen as extensions of the rules vl and vE. Let us take the rule of
" existential quantifier introduction (EI} first. To establish a con-
clusion such as (dx)Fx, a natural premiss is something like Fm:
given a particular object with F, we can conclude that something has
F. Thus, in our universe of 3 objects, given any one of Fm, Fn, Fo,
we can conclude (Hx)Fx; or, in the infinite case, given any particular
natural number with F, we can conclude that some number has F.
If we bear in mind the disjunctive status of the existential guantifier,
the analogy with vI should be obvious.

Hence the justification for EI is that, if a particular thing has a
certain property, then something must have it, and El will enable
us to pass from premisses such as Fm and Frn to conclusion (dx)Fx,
and from Fm & Gm and Fn & Gn to conclusion (dx)(Fx & Gx) (if
m has both F and G, or if » has both F and G, then something
has both F and G). Further, we extend the rule to apply also to
premisses concerning arbitrarily selected objects a, b, ¢ for,
if an arbitrarily selected thing has F, then again something
has F. Hence, for example, EI will enable us to pass from
premiss Fa v Ga to conclusion (x)}(Fx v Gx) (if an arbitrarily
selected object has either F or ¢, then something has either
For G).

A very simple application of this rule occurs in the proof of the
following (evidently valid) sequent:
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104 () Fx F{dx)Fx
I (1) OoFx A
I (2) Fa i UE
I Gy dxoFx ZEL

If evervthing has F, then in particuiar an arbitrarily selected object
a has F, whence by El something has F.

The rule of existential quantifier ehimination (EE} can best be
understood in the light of the rule vE. Given z disjunction A v B. it
being desired 1o establish a conclusion C, we derive C first from A
as assumption and then from B as assumption. knowing that, if C
follows from both A and B, then, since one or the other holds, C
must hold. Similarly, if we know in our 3-object universe that
something has F, we know effectively

(1) Fmv Fnv Fo.

Seeking to establish a conclusion C, we might assume each disjunct
of the complex disjunction in turn, knowing that if C follows from
all those disjuncts, then, since ome or other holds, C must hold.
However, where an infinite universe i1s involved, (Hx)Fx is a kind of
‘infinite disjunction ’, and there can be no question of deriving C
from each of the infinitely many disjuncts. Now in the case of UI,
we adopted the device of arbitrary names “a’, “ b, * ¢ * just because
we could not establish separately the infinitely many conjuncts that
go to make the * infinite conjunction’ (x)Fx. For EE we may use
the same device. Instead of showing that C follows from the
separate assumptions Fm, Frn, Fo, we may show instead that C
follows from the single assumption, Fa, that an arbitrarily selected
object has F. The pattern of proof will then be: given (Hx)Fx, and
that C follows from assumption Fa, then C follows anyway. Here.
the proof of C from Fa is a condensed representation of possibly
infinitely many derivations of C from all the disjuncts in the dis-
guised disjunction (x)Fx. We may call Fa here, I hope suggestively,
the fypical disjunct corresponding to the existential proposition
(dx)Fx.

Thus the justification for EE is somewhat as follows. If something
has a certain property, and if it can be shown that a conclusion C
follows from the assumption that an arbitrarily selected object has
that property, then we know that C holds; for if something has the
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property, and no matier which has it then € holds, then C holde
anyway. The conclusion C will of course, as in vE, rest on any
assumptions on which the existential proposition rests, and on anv
assumptions used to derive C from the corresponding typical disjunct
apart from the disjunct itself. And on the right-hand side we shall
cite three lines: (i} the line where the existential proposition occurs;
(ii) the line where the typical disjunct is assumed; and (iii) the line
where C s drawn as conclusion from the typical disjunct as
assumptior.
These new rules are illustrated by the following proofs:

108 () (Fx = Gx), (3xVFx + (dxGx
1 (1) ((Fx>Gx) A

2 (D (Hx)Fx A

3 (B Fa A

1 (4y Fa - Ga 1 UE
1,3 (5) Ga 34 MPP
L3 (6) (dx)Gx 5 El

12 (7) (dx)Gx 2,36 EE

Given that everything with F has G and that something has F, we
show that something has G. We assume, preparatory to EE, that
an arbitrarily selected object @ has F at line (3}, and then conclude
(Iine (6)) that something has G. We are now ready for a step of EE:
given an existential proposition to the effect that something has F
at line (2) and a derivation of the desired conclusion from the
corresponding typical disjunct at line (6), we obtain the conclusion
again at line (7). We cite on the right line (2), the existential propo-
sition, line (3), the typical disjunct, and line (6), the conclusion
obtained from that assumption. The conclusion now rests upon
whatever assumptions the existential proposition rests upon—here
merely itself—and any assumptions used to obtain the conclusion
from the typical disjunct Fa apart from Fa itself, which gives just (1)
and (2).

The analogy with vE can be brought out by supposing that, as a
special case, we are dealing with a 2-object universe, containing just
m and n. Then, for this universe, (Hx)Fx amounts to Fm v Fn, and
(3x)Gx to Gm v Gn. The corresponding proof with VE in place of
EE would go as follows:
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i (DY o FrGxy A
2 (2y Fim v Fn A
I (3 Fm A ¥ {3 Fn A
i {4y Frmi > Gm I UE j (4" Fn-=Gn 1 UE
13 (5) Gm 3, 4MPP L3 (8)Gn 3, 4" MPP
1,3 (6) Gmv Gn 5 vl 1,3 (673Gmv Gn &' vi
1.2 (7Y Gmv Gn 2,3,6.3 6" vE

Here the lines (3)-(5") exactly mirvor (35-(5) with “» " in place of
“m’. The bnes (3)-(6) of our actual proof of 105 condense these
twin arguments Into one argument, by the employment of arbitrary
names 1n place of the proper names “m " and *» ", and by using the
typical disjunct * Fe ' n place of the separate disjuncts * Frm* and
‘Fn'.

106 (x)Gx - Hx), (Hx}Fx & Gx) F(HX)(Fx & Hx)

I () (NGx>Hx) A

2 (2y (Ax)(Fx & Gx) A

3 (3 Fe&Ga A

I (4) Ga > Ha 1 UE

3 (5) Ga 3 &E
1,3 (6) Ha 4,5 MPP
3 (1) Fa 3 &F
1,3 (8) Fa & Ha 6.7 &I

13 (9 (Ex)(Fx & Hx) 8 El
1,2 (10) (3x)(Fx & Hxy 23,9 EE

The strategy here should be clear. To prove (dx)(Fx & Hx) from
(@x)(Fx & Gx), we aim for the same conclusion from Fa & Ga, the
corresponding typical disjunct. Since everything with G has H,
from Ga we can infer Ha, hence @ has both F and H, and so some-
thing has both F and H. The conclusion at (10) rests on (2), the
original existential proposition, and (1}, which was used to obtain
the conclusion from (3), as we see at line (9).

These two proofs illustrate a general tip for proof-discovery.

Given (dx)(... x...) and desiring to prove a conclusion C, you
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should assume (... ...} as typical disjunct and irv to obtain C
from it. For, if you succeed, EE will give vou just this conclusion.
Once (... @ ...} has been assumed, reasoning of the propositional
calculus type will generally assist in the derivation of C.

As in the case of Ul the use of arbitrary names with EE necessi-
tates certain restrictions if fallacies are to be avoided. In the case
of Ul, we required that the arbitrary name in question should not
appear in the assumptions on which the conclusion drawn resied.
For EE we require that the arbitrary name in question shall noi
appear either in the conclusion C drawn or in the assumplions
used to dertve C from the typical disjunct (though of course it will
appear in the typical disjunct itself).

To see that the arbitrary name must not appear in the conclusion
C, we need only observe that otherwise we could prove, given that
something has F, that everything has £,

(O EFx A
(2) Fa A

I (3) Fa 1.2,2 EE

I {4) (0)Fx 3 UL
The step of Ul 1s correct, since 1 does not contain “a’. But the
step of EE is incorrect because the conclusion in question, here Fa,
does contain ‘a’. It does not follow from something’s having F
that an arbitrarily selected object has F, though of course Fa follows
from itself. To see that the arbifrary name must not appear in the

assumptions (apart from the typical disjunct) used to ebtain C,
consider the following ‘ proof ":

ey

-

1 (1) Fa A
2 (2) (IX)Gx A
3 (3)Ga A
1,3 (4) Fa & Ga 1,3 &I

1,3 (5) (@x)(Fx & Gx) 4 EI
1,2 (6) (Ax)(Fx & Gx) 2,3,5 EE

The conclusion, that something has both F and G, is here reached
from the two assumptions that an arbitrarily selected object has F
and that something has G. Now, let F'be being even, and G be being
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odd: then I can select 2 number ¢ which is even, so that Fz becomes
true, and there are odd numbers, so that (Hx)Gx 15 also true. But
it is false that any number is both odd and even. The step of EE is
unsound, because the conclusion at line (5) rests on (1) which
contains ‘¢’

The new restriction is again easy to observe in practice. For
example, to see that the step of EE at line (10) of 106 is correct, we
mspect line (9); the conclusion there does not contain ‘¢’ of the
two assumptions on which 1t rests, (3}, the typical disjunct, of course
contains * ¢’ bui (1) does not; thus the restriction is met.

Since arbitrarily selected objects play a large part in our work, it
may be as well to attempt 1o clarify their position. Let F be some
property, and o an arbitrarily selected object from some universe:
then, given that everything has F, ¢ has F, but not conversely.
We accept as valid the sequent (x)Fx b Fa, but not the sequent
Fa b (x)Fx; and we reject the latter because a, though arbitrarily
selected, may not be fypical. On the other hand, by UI, under
certain conditions we pass from premiss (. .. ¢ ...} to conclusion
(x){. .. x...); however, the conditions involved are such as to
ensure that g is here typical, for we stipulate that (... a. ..} shall
not rest on any special assumptions about 2. We also declare that,
given that g has F, something has F, but not conversely. We accept
as valid the sequent Fao F (dx)Fx but not the sequent (dx)Fx I Fa,
and we reject the latter because g, being arbitrarily selected, may not
be one of the given objects with F. On the other hand, by EE, under
certain conditions we can derive conclusions obtained from Fua
directly from (dx)Fx, as though what Fa implied (Ix)Fx implied
also; however, the conditions involved are such as to ensure that any
such conclusion is obtained from Fu only on the understanding
that a is typical-—no special assumptions about @ other than Fg are
made and the conclusion does not concern a—and so can be taken
as one of the given objects with F. Thus the claim that an arbitrarily
selected object has F must be distinguished both from the claim
(x)Fx and the claim (dx)Fx, though it is derivable from the former
and the latter is derivable from it.

EXERCISES

I Using quantifier and propositional calculus rules, show the validity
of the following sequents:
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{a} W Fx = Gxy, (dx)—Gx v (Hx)— Fx
(by (x}Fx - Gx & Hx), (3x)Fx v (Hx)\Hx
(o) () Fx v Gx = Hx}, (Hx)y—Hx + (3xy— Fx
2 (i) Using quantifier and propositional calculus rules, show the validity
of the following sequents:
(@) (eNGx = — Hx), (Hx)(Fx & Gxy v (Hx)¥Fx & —Hx)
(b (x}(Hx = Gx}, (Gx)(Fx & —Gx) v (Hx)(Fx & — Hx)
(e} (X} Hx = — G}, (Hx¥Fx & Gy v (BxYFx & — Hx)
(@) o Gx o Hxj, (HxMGx & Fx) v (Hx)(Fx & Hx)
(e) (TxNGx & Hx}, (x0(Gx > Fxj + (Sx)(Fx & Hx)
N OHGx - — Hxy, (HxHGx & Fxy v (Ex¥Fx & — Hx)
(2) (Fx)Gx & — Hx), Gol(Gx 5= Fx) v (Ax)Fx & — Hx)
(ii) For each of the foliowing arguments, indicate which of the sequents

{a}«(g) above exhibits its logical form (thus establishing the validity
of the arguments):

(¢) No mountains are climbable; some hilis are climbable; there-
fore some hills are not mountains.

(b) Some mountains are climbable; all mountains are hills; there-
fore some hills are climbable.

{(¢) All hills are climbable; some mountains are not climbable;
therefore some mountains are not hilis.

(d) All hills are climbable; some hills are mountains; therefore
some mountains are climbable.

(e) No mountains are climbable; some hills are mountains; there-
fore some hills are not climbable.

(f) Some mountains are not climbable; all mountains are hills;
therefore some hills are not climbable.

{g) No mountains are climbable; some mountains are hills: there-
fore some hills are not climbable.

4 ELEMENTARY VALID SEQUENTS WITH QUANTIFIERS

In sequents 100-106, we have observed some of the basic results
concerning quantifiers which we are now in a position to establish.
This section is devoted to proving further such results; these are
important in themselves, and their proofs will incidentally afford
greater insight into the use of the quantifier rules.
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107 (O(Fx - Gy F (O Fx - (x)Gx
108 (xX)(Fx - Gy F (A Fx 5 (30)Gx
Given that everything with F has G, it foliows that if evervthing has
F everything has G (107}, and 1t follows that if something has F
something has & (108). The proofs are immediate from the proofs
of 103 and 105, by a further step of CP In each case.
109 O)(Fx & Gx) -F 0Fx & (0)Gx
(a) () Fx & Gy b (x3Fx & (0Gx
I (h()(Fx & Gxy A

I (2) Fa & Ga 1 UE
1 (3) Fa 2 &E
{4y (o Fx 3UT

1 (5) Ga 7 &E
T (6) (x)Gx 5 UL

T (7)) Fx & (0)Gx 4.6 &l

(b) ()Fx & (x)Gx + (x)(Fx & Gx)
I (D (OFx &(x)G6Gx A

I Q) (x)Fx 1 &E
I (3) Fa 2 UE
T (4) (0)Gx I &E
1 (5) Ga 4 UE
1 (6) Fa & Ga 3,5 &1
I (NxFx&Gxy 6UlI

The proposition that everything has both F and G is interderivable
with the proposition that both everything has F and everything has
G. The proofs require little comment, except to observe that the
restriction on Ul is met at lines (4) and (6) of (4) and at line (7) of
(b), since “a’ does not appear in assumption (1) of either proof.
110 (Ix)(Fx v Gx) 4k (Ax)Fx v (3x)Gx
(@) (Ax)(Fx v Gx) F (Ax)Fx v (Ax)Gx
I (1) (3x){(Fxv Gx) A
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(9%

6
6
6
Z
i

(2} Fa v Ga

(3) Fa

{4y (Bx)Fx

(5y (3x)yFx v {(dx0)Gx

(6) Ga

(7} (Ax)¥Gx

(&) (dxyFx v (Hx)Gx

9y (xjFx v{dx)Gx
(1) (dxyFx v (Hx)Gx

Seguents with Quantifiers

JEI
4 vl
A

6 El

7 vl

L,

L RS
&3

N

J

2,3,5,6,8 vE
2,9 EE

1

3

(b) (3x)Fx v {dxyGx F (HxX)Fxv Gx)

]

2
3
3
3
2
7
8
8
8
7
I

(D) (Fx)Fx v (Bx)Gx

(2) (dx)Fx

(3) Fe

{4y Fav Ga

(5) (Hx)Fxv Gx)

{6) (dx)(Fx v Gx)

(7 (Ax)Gx

(8) Ga

(%) Fav Ge
(10) (AxXFx v Gx)
(11 (dx)}Fx v Gxj
(12) (Hx)}Fxv Gx)

A
A
A
3wl

El
3

[

EE

tn

e

g vi

G El

7,8,10 EE
1,2,6,7,11 vE

The proposition that something has either £ or G is interderivable
with the proposition that either something has F or something has
G. In proof (a), the overall strategy is, given an existential propo-
sition as assumption at hine (1), to assume its corresponding
typical disjunct (line (2)) and to obtain the desired conclusion from
that. This is achieved at line (9) by vE; vE is involved since the
typical disjunct is itself a disjunction, so that we obtain the con-
clusion from each limb in turn (lines (5) and (8)). At the final step
of EE, we notice that the conclusion does not contain ‘ ¢’ and that
line (9) rests only on (2), the typical disjunct itself; hence (10) rests
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The Predicare Calcuius |

only on (1), and the restriction on EE is met. In proof (b), our
overall strategy 1s to proceed by VE, given a disjunction as assumption
at hine (1). Each disjunct being an existential proposition, after
assuming it (lines (2) and (7)) we assume its corresponding typical
disjunct (lines (3) and (8)) and obtain the conclusion from that
(lines (5) and (10)). For control of the two EE steps (lines (6) and
(11)). we notice that the conclusion lacks ‘'« and that lines (5)
and (10) rest only on the iypical disjuncts (3) and (8).

The interderivability resulis 109 and 110 are entirely 1o be expected
when we bear in mind the conjunctive status of the universal
quantifier and the disjunctive status of the existential guantifier. as
discussed in the previous two sections. Put loosely, they claim
that a universal quantifier may be distributed through 2 conjunction
and an existential quantifier through a disjunction.

111 (Ix)(Fx & Gx) b (Fx)Fx & (A0)Gx
() @0(Fx & Gx) A

2 (2) Fa & Ga A

2 (3) Fa 2 &E

2 (4) (Ax)Fx 3 EI

2 (5)Ga 2 &E

2 (6) (Ix)Gx 5 EI

2 () (Ax)Fx & (Ex)Gx 4.6 &I
1 (8) (Ax)Fx & (Ax)Gx 12,7 EE

Given that something has both £ and G, it follows that something
has F and something has G. We proceed by EE, and assume at
line (2) the typical disjunct Fa & Ga corresponding to (1) (7 x)
(Fx & Gx). For EE at line (8), we observe that the conclusion lacks
“a’ and that (7) resis only on (2).

The converse sequent, (3x)Fx & (Ax)Gx 1 (Ax)}Fx & Gx), is not
valid: consider the universe of positive integers, and let F be the
property of being even, G the property of being odd: then it is true
that there are even numbers and that there are odd numbers ((Ix)Fx
& (3x)Gx), but false that there are numbers both even and odd
((dx)(Fx & Gx)). It is instructive 1o see how natural attempts to
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prove this sequent fail, in view of the restriction on EE. We might
start:

i (D {E)Fx & (3x)Gx A

i 2y (FIx)Fx I &E

I (3 (x)Gx I &E

4  (4) Fa A

5 (5 Ga A

4.5 (6) Fo & Ga 4.5 &1
4,5 () (Hx)WFx & Gx) 6 El

For the existential propositions (2) and (3) we have assumed the
typical disjuncis (4) and (5), and derived the conclusion (dxy(Fx
& Gx) from them. But any atiempt to apply EE, either using (2)
or using (3}, now fails, since the conclusion at line (7) rests on (4
and (5), in both of which ‘o appears. Hence we can obtain neither

L5 (8) (HxKFx & Gx) 2.4,7 EE
(since “ @ " appears in (5)), nor
L4 (8) (dx)(Fx & Gx) 3,57 EE

(since “ @’ appears in (4)). If we could reach either of these lines,
the conclusion

1 (9) (Hx)(Fx & Gx)
would of course follow by a further (sound) step of EE.

112 ()Fx v (x)Gx F (x)(Fx v Gx)
I (D Fxv{)Gx A

2 2y (x)Fx A

2 (3) Fa 2 UE

2 (4) FavGa 3 vl

2 (5 (xXFxvGx) 4 UI

6 (6) (x)Gx A

6 (7)Ga 6 UE

6 (8 FavGa 7 vl

6 (9 (XMFxvGx) g Ul

I (10) (N Fxv Gx) 1.2,5,6,9 vE
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Given that either everything has F or evervthing has G, then every-
thing has either For G. Proofis by vE; in using Ul at hines (5) and
(%), we observe that neither limb of the assumed disiunction (1)
contains “ 2, so that the restriction 15 met.

The converse sequent, () Fx v Gx) F{x)Fx v {(x)yGx. is not valid,
and the interpretation just used shows why not; for all positive
integers are either even or odd, but it 1s neither the case that all are
even nor the case that all are odd. In this case, it is the restriction
on Ul that prevents natural attempts to prove the sequent, Thus:

T (L xFxev Gxy A

I (2) Fav Ga I UE

3 (3} Fa A
Concluding Fa v Ge from (1), we assume the first disjunct Fa at
line (3); but now we are prevenied from concluding (x} Fx since (3)
coptains ‘a’. I this step were permitted, we could conclude

(x)Fx v (x)Gx by vi, then obtain the same conclusion from Ga, and
vE would vield the invalid sequent.

113 (Fx)Fx b —(x)— Fx
(@) (IXVFx b —(x)—Fx

1 (1) (Ix)Fx A
2 (2) Fa A

3 (3) (x)— Fx A

3 (4) —Fa 3 UE

23 (5 Fa & —Fa 2,4 &I

2 (6) —(x)—Fx 3,5 RAA
1 (7) —(x)— Fx 1,2.6 EE

(b — (x) —Fx F (dx}Fx

1 (1) —(x)—Fx A
2 () —(Ex)Fx A
3 (3) Fa A
3 (@) (HoFx 3 El

2,3 (5 HEx)Fx & — (Hx)Fx 2.4 &I
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2 (6) — Fa 3,5 RAA
2 (7) (x)— Fx 6 Ul
1,2 (&) (x)—Fx & —(x)—Fx 1.8 &1

I (9) — —(Hx)Fx 2,8 RAA
I (10 (Bx)Fx ' 9 DN

The proposition that something has F s interderivable with the
proposition that i1t 1s not the case that everything lacks F. In proof
{a), given (Hx)Fx, we assume the typical disjunct Fe (line (2)} and
aim for the conclusion —(xj— Fx from that. We obtain this by
RAA, and assume (x)— Fx at line (3} accordingly. The restriction
on EE at hme (7) is met, since the conclusion lacks ‘¢’ In proof
{b), we assume at line (2) —(Hx)Fx, and aim to derive {x)— Fx,
contradicting (1). To obtain (x}— Fx, it suffices to obtain — Fe and
use Ul so we assume Fa (line (3)) and go for 2 contradiction (line
(5)). In applying Ul at line (7), note that (6) rests only on (2), which
facks ‘@,

By the relationship between the quantifiers and * & " and * v °, the
mterderivability result 113 is akin to 36, in Chapter 1, Section 5.
Indeed, mutatis mutandis, the proofs are structurally the same, as
the reader may care to check for himself. Put loosely, 113 tells us
that any existential proposition is tantamount to the negation of a
universal proposition, in the way in which 36 tells us that any
disjunction is tantamount to the negation of a certain conjunctior.
Our next result, conversely, says that any universal proposition is
tantamount to the negation of an existential proposition, and should
be compared with the sequent 1.5.1(h).

114 (x)Fx b —(Hx)— Fx
{a) (x) Fx b — (Hx)—Fx

1 (1) (0)Fx A

2 (2) (@x)—Fx A

3 (3)—Fa A

1 (4) Fa | UE
13 (5) Fa & —Fu 3.4 &I
3 (6) —(x)Fx 1,5 RAA
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2 ATy —{(x)Fx 236 EE

.2 (8) (x)Fx & —(x)Fx 17 &I

i {9y —(dx)}—Fx 2.8 RAA
(b —{dxy—Fx ¥ (x)Fx

i {1y —(dxy—Fx A

2 {2y —Fa A

2 () Hxy—Fx 2 El

1,2 (4 (dx)—Fx & —{(dx)—Fx 1,3 &1

! (5) ——Fa 2.4 RAA

I (6} Fa 5 DN

i (N (x)Fx 6 Ul

The proposition that everything has F is interderivable with the
proposition that it is not the case that something lacks F. In proof
(a), we assume (Hx)—Fx (line (2)) to obtain —(x)Fx, contra-
dicting (1), and proceed by EE, assuming the typical disjunct at line
(3). In proof (b), it suffices to prove Fa from (1)}, hence we assume
— Fa at line (2) and search for a contradiction. The reader should
confirm that restrictions on EE and Ul are met here.

118 () Fx - (y)Fy

T (D(x)Fx A

1 (2) Fa 1 UE

1 G)yOFy 2U1
The converse is similarly derivable. Since variables are merely
devices for cross-reference, we should expect this interderivability.

Both sentences in fact express the same proposition—that everything
has F. Similarly:

116 (Ix)Fx 4 (y)Fy

I (DEH)Fx A

2 (2) Fa A

2 3 @E»Fy 2E>

1 @) Ey)Fy 1,2,3EE
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The next proof requires no comment; but the reader should watch
the observance of the restrictions on EE and UL

117 (3 Fx 5 Gx) 4 —(Fx)(Fx & — Gxj
(a) () (Fx » Gxy b —(FAx)Fx & — Gx}

i (D) (xMFx > Gx) A
2 (2 (Ix)Fx & —Gx) A
3 {3y Foa & —Ga A
2 {47 —(Fa - Ga) 3818 2.2.5)
I (5} Fa = Ga I UE
LY Gy (FoGa) &
—A{Fa - Ga) 4.5 &1
3 {7y —(x¥Fx = Gx) 1.6 RAA
2 (8) —(x}Fx = Gx) 2,37 EE
1.2 (9) ()(Fx - Gx) &
—(x)}(Fx - Gx) 1,8 &l
I (10y —(Hx)Fx & —Gx) 2,9 RAA
by — (dx)(Fx & —Gx) F (xX)(Fx -+ Gx)
I {1y —(Ex)Fx & —Gx) A
2 (2) —(Fa > Ga} A
2 (3) Fa & —Ga 2 SK(S) 2.2.5()
2 (4) (Hx)}(Fx & —Gx) 3EIL
L2 5) (@x)Fx & —Gx) &
—(Hx)(Fx & —Gx) 1,4 &1
I (6) ——(Fa-> Gaj 2.5 RAA
I (7y Fa > Ga . 6 DN
I (&) (x)(Fx > Gx) 7 Ul

The proposition that everything with F has G is interderivable with
the proposition that it is not the case that something has F but not
; more loosely, to affirm that everything with F has G is to deny
that something with Flacks G.
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The last two interderivability results of this section are somewhat
surprising.
118 ()(Fx - PY AR (Hx)Fx > F
{¢) ()(Fx—= PyF(HEx)Fx > F
T (D (0 Fx=Py A

2 (2) (dx)Fx A
3 (3) Fa A

I (4 FasP 1 UE

13 (5P 3.4 MPP
12 (6)F 23,5 EE
I (7 (Ex)Fx>P 2.6CP

(B) (Ax)Fx = P F (x)Fx -+ P)

1 () @Ex)Fx>P A
2 () Fa A

2 (3) (3x)Fx 2 El

1.2 (4P 1.3 MPP
I (5) Fa7P 2.4 CP

1 (6) (x)(Fx>P) 5UI

The universal proposition that, for any object, if it has F then P
is interderivable with the conditional that if something has F then
P. (It is important to see here that the universal quantifier in
‘(x)(Fx - P)’ governs the whole expression ‘(Fx -» P}’, whilst the
existential quantifier in ‘ (dx)Fx - P’ merely governs the ante-
cedent of the whole conditional; compare the difference between
f—(P- Q) and *—P-> 0’) Thus, letting F be the property of
being a man, and P the proposition that the earth is populated, to
say that if there are men then the earth is populated is to say that,
for any object, if it is a man then the earth is populated.

119 (Hx)(P - Fx) 4+ P > (3x)Fx
(@) (3X)P-> Fx) b P> (Bx)Fx
1 (D) (HxP~> Fxy A
2 2y P A
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3 {3y P Fuo A
2.3 (4} Fe 2,3 MPP
2.3 Gy (30 Fx 4 El
1,2 (6) (Ax)Fx LAL5SEE
I (7) P> (dx)Fx 2,6 CP

(b) P = (Fx)Fx F (Tx)(P + Fx)
1 (LPs>(E)Fx A

2y Pv—P TI 44
i (3P A
1.3 (4) (Fx)Fx 1,3 MPP
5 (5) Fa A
5 (6) P> Fa 5 SK(S) 50
5 (N (TP Fx) 6EI
1,3 (8) (x)F = Fx) 457 EE
9 (9 —P A
9 (10) P> Fa 9 SKS) 51
9 (11 (dx)(P > Fx) 10 EI
I (12) (3x)(P - Fx) 2.3.8,9,11 vE

The existential proposition that there is something such that if 2
then it has F is interderivable with the conditional that if P then
something has F. Proof (@) is straightforward, when we note that
(3) is the typical disjunct corresponding to (1). Since P at line (2)
lacks “ a’, the step of EE at line (6) obeys the restriction. Proof (b)
is more complex: it proves convenient to introduce the law of
excluded middle (line (2)), and proceed by VE (line (12)). We assume
P at line (3), and obtain the conclusion from it at line (8): this
phase uses EE, for we reach the comclusion at line (7) from the
typical disjunct Fa (line (5)) corresponding to the existential propo-
sition at line (4). The second phase (lines (9)-(11)) uses, like the
first phase at line (6), a propositional calculus sequent to pass from
—P to the conclusion P -»= Fo-—a simple substitution-instance on
~Pt+P-> Q. After VE, the conclusion rests only on (1), which
was used to obtain it from the first disjunct P at line (8).

127



The FPredicate Calenlus |

EXERCISES

i

Establish the following resuits:

Ly (0 Fx = Gx) b {x)— Gx - (x)— Fy

(B) (XM Fx » Gx) b (Hx)— Gx = (Ax)— Fx

(¢} (dx)—Fx b —(x)Fx

(dy (x)— Fx A —(dx)Fx

(e} (xHFx > — Gx) 4 —(Ex)¥Fx & Gx)

(fy (XWFx i G ) AV O Fx = Gx) & (xHGx 5 Fx}

(2) oW Fx o Gt} X)) Fx e (x5} G

(R (XN Fx 3 Gx) b (Ax)Fx < (Ax)Gx

(i) Which sequents proved in the text show the interderivability of

the proposition that all women are fickle with the proposition that
there are not women who are not hckle?

(i) Which sequents proved in Exercise 1 show the interderivability of
the proposition that no men are fickle with the proposition that
there are not men who are fickle?

Establish the following interderivability results:

(@) NP > Fx) 4 P> (x)Fx

(b)y (XX P & Fx) A+ P & (x)Fx

(¢) (HxXP & Fx) 4+ P & (dx)Fx

(dY (x¥P v Fx}y it Pv(x)Fx

(e) (Ax{P v Fx) 4k Pv (Hx)Fx

(f)y Bx)YFx> Py ()Fx—> P

-5 GENERAL QUANTIFIER ARGUMENTS

So far, our derived sequents have concerned properties rather than
relations—predicate-letters followed by one variable rather than
more than one. We now consider sequents in which relations occur,
and the general question of showing the validity of complex
arguments as they occur in ordinary speech.

It 1s convenient to record at the outset two interderivability

results which yield guantifier-shift principles.

120 (x)(p)Fxy 4+ (p)(x)Fxy

() nExy A
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2y )Fay !
{3} Fab 2
{4 (x)Fxb IUI
(5) O Fxy 4 Ul

The converse 15 proved similarly. At line (2), we drop the
quantifier “{x)’ and associated variable ‘¥’ in favour of an
arbitrarily selected object a. Thus (2) says that, for any object,
bears relation F to it. The move from (2) to (3) 15 similar. and (33
affirms that an arbitrarily selected o bears F to an arbitrarily
selected b, Observe that UE permits us to drop only one universal
quantifier at a time. We then restore the guantifiers in reverse
order by UL, noting that neither ‘@’ nor * &’ occurs in {I). From
(2), we might have soundly concluded

1 (3% Fae

(if a bears F to everything, then a bears F to itself). And from (3')
we might have soundly concluded

T (4 (x)Fxx

(if arbitrarily chosen o bears F to itself, then under the usual
restriction everything bears F to itself). But of course our actual
line (4) would not follow from (3'), nor would

(4" (x)Fxa.

Given that @ bears F to itself, it does not follow that everything
bears F to a. An arbitrarily selected person has the same age as
himself, but not everyone has just that age, though everyone does
have just his own age. These considerations should motivate the
choice of a different arbitrary name ‘5’ at line (3), for otherwise
we should not be able to reintroduce two distinct quantifiers.

UE
U

oy St L It
i

121 (Ex)(Ey)Fxy 4+ (y)(Ex)Fxy
1 () @E@x)Ey)Fxy A

2 () By)Fay A
3 (3) Fab A
3 (4) (Bx)Fxb 3 EI
3 (5 (@yEx)Fxy 4 El
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2 (&) (InEx)Fxy 2,35EE
I (M (EyExiFxy 1,26 EE

The converse is again proved similarly. (2) is the typical disjunct
corresponding to (1), and (3} in turn is the typical disjunct corres-
ponding to (2). We pick distinct arbitrary names “a’ and “ 5 for
good reasons: the step of EE at line (6) would be unsound if {3)
were Foa. From Faa, that arbitrarily selected o bears F to itself, we
can certainly conclude (line (5)) that something bears Fto something,
But we could also conclude from Fae

3 (4% (Hx)Fxx;
yet this conclusion woulid not follow from (2. Given that someone
is taller than an arbitrarily chosen person a, it does not follow that
someone is taller than umself. Faa i fact is not the proper typical
disjunct corresponding to (2).

120 and 121 show us in effect that the order of universal quantifiers
and the order of existential quantifiers are immaterial to sense. This
13 nof the case, however, with a mixture of the two quantifiers. We
do have:

122 (Hx)(»)Fxy F(y)EX)Fxy
L () @ExFxy A
(2) (nFay A
(3) Fab 2 UE
(4) (Ix)Fxb 3 EI
(5) (MEX)Fxy 4 UL
(6)y O)(HEx)Fxy 1,2,5EE
Here (2) is the typical disjunct corresponding to (1). It is essential
that we select a different arbitrary name ‘&’ in the application of

UE at line (3). Faa would be a sound conclusion from (2}, and we
could then infer

2 (4" (Hx)Fxa
(if @ bears F to itself, then something bears F to @). But the step of
UT at line (5) would now be unsound, since (2) contains ‘a’.
The converse sequent (W)Hx)Fxy F (x)(»)Fxy, however, is not
derivable. Nor should we wish it to be: consider the universe of
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General Quantifier Arguments

people, and let F be the parent relation; then everyone has someone
as parent, but 1t is false that there 1s someone who is everyone’s
parent. It is instructive to see how natural attempts (o prove this
are blocked by the restrictions on our rules. For example:

Py (pidx)Fxy A

I Q) Ex)Fxa I UE

3 (3) Fba A
(4) (viFby 3 UL
Sy (Ex)YnFxy 4 E]
(&) (dxy(»Fxy 2,35 EE

R B

The only faulty step 1s step (4)—faulty because (3} contains ‘o,
so that the restriction on Ul is violated, This * near miss’ should
inculcate respect for the practice of restriction observance.

There is a famous and simple argument, cited by de Morgan as
an example of 2 kind of reasoning which, though patently sound,
could not be handled within the framework of traditional logic. It
runs

(1} All horses are animals: therefore all horses’ heads are
animals’ heads.

To show the validity of (1) by our rules, we must first translate into
the symbolism of the predicate calculus. Let F be being a horse, G
be being an animal, and H the relation of being a head of. Then the
premiss of the argument is evidently (x)(Fx - Gx). As a first step
towards rendering the conclusion, we may adopt

(2) Anything that is a head of a horse is a head of an animal.

For something to be a head of a horse there must be some horse of
which it is the head; in symbols, @ is a head of a horse if and only if
(dy)(Fy & Hay). Similarly, e is a head of an animal if and only if
(dyX(Gy & Hay). The sequent, therefore, which we need to prove
to demonstrate the validity of (1) is

123 (x)(Fx > Gx) F (O((B»)(Fy & Hxy) = (0)(Gy & Hxy))
i (1) (X)(Fx = Gx) A
2 (2) (3y)(Fy & Hay) A
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3 (3} Fb & Hab A

3 (4) Fb 3 &E

3 {5y Hab 3 &E

i (6) Fb - Gb I UE

L3 (7 Gb 4.6 MPP
L3 (8 Gb & Hab 5.7 &1
L3 (9 (GyHGy & Hay) ¢ El

&
L2 (10 (8yHGy & Hay) 2,391
i (11y (dyWFy & Hay) - (A} Gy & Hay) 2,30 CP
I (12) (((Ey)(Fy & Hxy)» (ByNGy & Hxy)) 11 Ul

Given (1) as assumption, to prove the umiversal proposition as
conclusion we atm for the corresponding assertion concerning an
arbitrarily selected object g, as at line (11). This being a conditional,
we assume (line (2)) its antecedent, and aym for its consequent (line
(10)). Since assumption (2} is an existentizl proposition, we assume
the corresponding typical disjunct (line (3)), and aim for the same
conclusion from that. Note that in the typical disjunct we select a
new arbitrary name ‘ b°. The remaining strategy remains at the
level of the propositional calculus until line (9), where we use EL
The step of EE is sound {line (10)), because the conclusion lacks
‘b’ (though it does contain * a "}, The step of Ul is sound {line (12}},
because (1) lacks “a’.
Consider next the following rather more complex argument:

(3) Some boys like all girls; no boys like any bookworm;
therefore no girls are bookworms.

The first premiss affirms that there is something which is a boy and
likes all girls, that is, anything which is a girl it likes; in symbols,
using F for being 2 boy, & for being 2 girl, and H for liking:

(4) (@x)(Fx & (yNGy » Hxy)).

The second premiss affirms that anything which is a boy is such that
it does not like any bookworm, that is, such that anything which is
a bookworm it does not like; in symbols, using F for being a
bookworm:
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(5) GNFx = (y) By = — Hxy)).

The validating sequent which we need to prove is therefore

E24 (Hx)(Fx & (WUGy - Hxv)), (xH{Fx - (¥} By - — Hxp))
FHGx = — Bx)

I (1) (@x)(Fx & ()N(Gy > Hxy)) A

2 (2) G Fx = () By > — Hxy)y A

3 (3} Fo & {v)(Gy - Hay) A

3 (4} Fa 3 &E

3 (5) (WU Gy > Hay) 3 &E

2 (6 Fa - (y)}{( By > — Hay) 2 UE

2,3 (73 (¥ By -» — Hay) 4,6 MPP
8 (8) Gb A

3 (9) Gb - Hab 5 UE

3,8 (10} Hab 89 MPP
23 (11 Bb - — Hab 7 UE

38 (12y ——Hab 10 DN
238 (I13) —Bb 11,12 MTT
23 (J4) Gb- —Bb 8,13 CP
2,3 (15 (x)N(Gx > — Bx) 14 Ul

1,2 (16) (x{Gx > — Bx) 1,315 EE

With an existential proposition as assumption (1), we naturally
assume the corresponding typical disjunct at line (3), and aim to
derive the conclusion from that: hence the final step of EE. Lines
(4)~(7) are concerned merely with  itemizing * the conjunction at (3)
by &E and drawing the most obvious consequence of (4), Fa, at
line (7). To prove (x)(Gx - — Bx), we aim for Gb-> — Bb, hence
the penultimate step is Ul. So we assume Gb at line (8), and aim
for —Bb. The central part of the proof is mainly propositional
calculus reasoning, using the universal propositions at lines (5) and
(7) in particular application to b. It i1s a very general tactic of
discovery to proceed ‘from both ends’ in this manner; the
central part of the desired proof will tend to be propositional in
character, and relatively easy. '
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Consider, thirdly, the following argument:

(6) Some botanists are eccentrics; some botanists do not iike
any eccentric; therefore some botanists are not liked by
all botanists.

Using F for being 2 botanist, & for being an eccentric, and H for
liking, we have respectively for the two premisses of (6)

(1 (Ax)}Fx & Gx);

(8) (Ix)(Fx & (PNGy > —Hxy)).

The conclusion affirms that there is something which is a botanist
and which is not liked by all botanists, that is, for which it 1s not
that the case all botanists like it. In symbols

(9) (Hx)(Fx & —(y)NFy - Hyx)).

We shall naturally, in seeking a proof, assume the two typical
disjuncts corresponding to (7) and (8)
(10) Fa & Ga
(11 Fb & () Gy - — Hby).
This gives effectively four items of information, and, as a special
case of the universal proposition (¥)NGy-=—Hby), we have
Ga > — Hba, whence — Hba by MPP. Now intuitively we are
seeking something which is a botanist (F) and not liked by all

botanists; a is such a thing, since Fa and b, who is 2 botanist, does
not like a. So we aim to prove

(12) Fa & —(y)(Fy - Hya).

The first conjunct of (12) is immediate from (10). The second can
readily be proved by RAA; for, assuming (y)(Fy > Hya}, we have
as a special case Fb-= Hba, whence Hba contradicting — Hba.
This intuitive discovery becomes formalized as follows:

125 (Ax)(Fx & Gx), (Ix)Fx & (YUGCy » — Hxy))
b (ExX)(Fx & — (P)(Fy > Hyx))

1 (1) (Ix)(Fx & Gx) A
2 (2) (x)(Fx & () Gy » —Hxy)) A
3 (3) Fa & Ga A
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4 (4} Fb & (yXGy - — Hby) A

3 {5) Fa 3 &F

3 {6) Ge 3 &E

4 {7y Fb 4 &E

4 (&) (¥ Gy > — Hby) 4 &E

4 (9) Ga -» — Hba 8 UE

34 {10y — Hba 6.9 MPP
i1 (IO (yFy - Hyaj A

11 (12} Fb - Hbo i1 UE
4.11 (13) Hba 7.12 MPP
34,11 (14) Hba & — Hba 10,13 &I
34 {15y — (U Fy > Hya) 11,14 RAA
3.4 (16} Fa & — () Fy - Hya) 5,15 &I

34 (7 (BxHFx & — () Fy- Hyx)y 16 EL
2.3 (18 (FxW(Fx & —(y}Fy-> Hyx)y 24,17 EE
1,2 (19) (Fx)(Fx & —(p)(Fy-> Hyx)) 1318 EE

Here, lines (3) and (4) are the typical disjuncts; Imes (5-(10) draw
out the immediate consequences of (3) and (4}; (11) is assumed
preparatory to RAA, and the desired contradiction obtained at
line (14). For EE at line (18), observe that (3}, on which the con-
clusion rests at line (17), does not contain ‘b °, though it does
contain ‘a’.

Finally, a rather messy, but valid, argument, which involves a
predicate-letter followed by three variables:

(13) If anyone speaks to anyone, then someone introduces
them; no one introduces anyone to anyone unless he
knows them both; everyone speaks to William; there-
fore everyone is introduced to William by someone who
knows him.

Let us use ‘ Jabe® for * a introduces b and ¢, * Fab’ for © a speaks
to b’, *Gab’ for ‘a knows b’, and ‘m’ for * William . The first
premiss is evidently
(14) ) Fxy > (2)lzxy).
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Re-thinking the second assumption, we obtain ' everyone who
mntroduces anyvone to anyone knows them both °, which becomes
{15} O Izxy = Gzx & Gzy).
The third premiss is
{16} (x)Fxm,
and the conclusion
(A7) (x)Ey)Jyxm & Gym).
The intuitive discovery of the proof is now not difficult. Let ¢ be
an arbitrarily selected person. Then from (16} we have
(18} Fam.
From (14}, as 2 special case, we have

(19} Fam = (dz)Izam,
whence

20y (dz2)izam.

Suppose now that an arbitrarily selected person b introduces a to
m. We have Ibam, whence, from (15) by MPP,

(21) Gba & Gbm.
This gives
(22y Iham & Gbm,
whence
(23) (@y)(Iyam & Gym).
The desired conclusion will now follow by EE and Ul. Formally

126 () Fxy - (B zxy), (W) Izxy - Gzx & Gzy),
(xy Fxm ¥ () (8 (Tyxm & Gym)

1 (1) O Fxy » (3z)Izxy) A

2 @) O2)Izxy > Gzx & Gzyy A

3 (3) (x)Fxm A

3 (4) Fam 3 UE

1 (5) W)Fay » (H2)zay) t UE

1 (6) Fam - (8z)Izam 5 UE

1,3 7y (3z2)fzam 4,6 MPP
8 (8) Ibam A
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(9 (V)z¥lzay » Gze & Gzy) 2 UE

2 (10} (2¥izam - Gza & Gzm) g UE

2 (11} Jbam - Gba & Gbm 10 UE
2.8 (12) Gba & Gbm §.11 MPP
2,8 ({13 Gbm 12 &F
2.8 (14} Iham & Gbwm 8,13 &1
2,8 15y (Fvlyvam & Gym) i4 El
12,3 Q06 dyyUyam & Gymy 7.8.15 EE
2.3 (0 CoEdyxm & Gym) i6 Ul

(i16) here rests on (1), (2), and (3}, because (7) rests on (1) and (3),
and (15) rests on (2) as well as the tvpical disjunct (8). All other
steps are elementary.

EXERCISES
1 Prove the validity of the following sequents;
(@) CON(z)Fxyz b (WM xiFxyz
(bY G Hdy M2y Fxyz V()X 3y Feyz
(¢} ExXI)N o) Fxyz b XEn(Ex)Fapz
2 Show the validity of the following arguments:
{a) If it rains, no birds are happy; if it snows, some birds are happy;
therefore, if it rains, it does not snow (use ‘P for ‘it rains’,
Q7 for ‘it snows ).
(b) All camels like a gentle driver; some camels do not like Mohammed ;
Mohammed is a driver; therefore Mohammed is not gentle.

(¢} All camels are highly strung animals; some drivers like no highly
strung animals; therefore some drivers do not like any camels.
{d) Some girls like William; all boys like any girl; William is a boy:
therefore there is someone who both likes and is liked by William.

(e} A whale is a mammal; some fish are whales; all fish have tails;
therefore some fishes® tails are mammals’ tails (use ‘ Tab® for ‘o
is a tail of &°).
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CHAPTER 4

The Predicate Calculus 2

I FORMATION RULES AND RULES OF DERIVATION

So far our treatment of the predicate calculus has been relatively
miformal, and it is iow time to do for this caiculus at least part of
what was done for the propositional caiculus in Chapter 2. In this
section, 1 give exact formation rules for the predicate calculus and
state the four rules of derivation involving guantifiers with full
precision. In the next section, I discuss substitution, theorem
mntroduction, and sequent introduction as they apply to the predicate
calculus, and state, but do not prove, consistency and completeness
results.

In paraliel with the discussion of Chapter 2, Section 1, we begin
with some ostensive definitions of the kinds of symbeol with which
we have to deal. The definitions of symbols in Chapter 2 are pre-
supposed here.

First, I define a proper name as one of the marks

.

m R,

Secondly, I define an arbirrary name as one of the marks
fa’ b, e, L

Thirdly, 1 define an individual variable as one of the marks

[ T S 3

x vyt

Fourthly, I define a predicate-letrer as one of the marks
CFELCGT CHY L

In each of these four definitions, as in the earlier definition of a
propositional variable, we are understood theoretically to have at
our disposal an indefinitely large number of distinct such marks.
This is shown by the addition of *. . .” to the list. We shall in gencral
speak of “x’, “y’, ‘z’, ... as plain varigbles, where no risk of
confusion with propositional variables is possible. Indeed, for present
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purposes, propositional variables are 1o be thought of as subsumed
under predicate letters, as we see in the definition (below) of an
atomic sentence.

Fifthly, I define reverse-E to be the mark

=

It proves convenient to have a word which covers both proper
names and arbitrary names. Hence | define sixthly a rerm to be
either o proper name or an arbitrary name; it 1s important to observe
that terms do ner include variables.

Seventhly, I define a symbol (of the predicate calculusy as either ¢
bracker or ¢ logical connective or a term or an individual variable or
a predicare-letrer (understood to include propositional variables) or
reverse-E. And eighthly I define a formula {of the predicate calculus)
as any sequence of symbols.

It now remains, as with the propositional caiculus, to distinguish
from the totality of formulae those which we wish fo count as well-
formed or meaningful. We therefore produce a multiple-clanse
definition, as before, which can be viewed as giving the formation
rules of the predicate calculus, or as stating the basic syntax of our
new language. |

We begin by defining an atomic sentence. Atomic sentences play
the role in the predicate calculus which propositional variables play
in the propositional calculus: they are the bricks out of which
complex well-formed formulae are constructed. In this and sub-
sequent definitions we use once more the device of metalogical
variables to facilitate our discussion of the language. Quite a
complex array of metalogical variables will be required: thus we
shall use ‘P’ as a metalogical variable whose range is predicate-

letters; “t°, “t;°, “t,’, ... as metalogical variables whose range is
terms; ‘v, ‘v, ', ‘v, ... as metalogical variables whose range is
variables; as well as other devices.
Lett,, ..., t, be any » terms (not necessarily distinct), where » is
greater than or equal to 0, and P be any predicate letter. Then
Pt,. . .t,

is an atomic sentence. In other words, an atomic sentence is a
predicate-letter followed by any (finite) number of terms. Thus

‘Fa’,*Gm’, “ Hbrn’, * Ganmac’
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are atomic sentences. However,
CFx ¢ Hxan’

are not atomic sentences, because ‘ x’ is not a term. We aliow in
the definition that the number of terms be 0. In this limiting case,
we have in fact a propositional variable. Strictly, “F7°, "G " H°
on their own will count as atomic sentences; but where a predicate-
letter has no following terms, it will be converyent to use letters
‘P’ Q°, R’ once more. Thus a propositional variable may be
viewed as an atomic sentence in which the predicate-letier is followed
by no terms.

Now we are in a position to define a well-formed formula (Wi} of
the predicate calculus as follows:

() any atomic sentence 15 a wif;

(b) if A is a2 wif, then —A 15 a wif;

(¢) if A and B are wffs, then (A - B} 1s a wff;
(d)if A and B are wifs, then (A & B) is a wif;
(e) if A and B are wffs, then (A v B) is 2 wff;
(/) if A and B are wffs, then (A <— B) is a wif;

2) let A(t) be a wif containing a term t, and let v be some
variable not occurring in A(t); let A(v) be a formula
resulting from A(t) by replacing at least one occurrence
of t by v; then (WA(V) is a wiT;

(k) let v be some variable and A(v) be a formula as described
in (g); then (Av)A(v) is a wil;

(i) if a formula is not a wff in virtue of clauses (@)-(#), then
it is not a wif.

This definition requires some discussion. It should first be com-
pared with the definition in Chapter 2 of a wff of the propositional
calculus. Our new clause (a) is an extension of the original clause
(@), replacing * propositional variable’ by ¢ atomic sentence *. Our
basic building material for wffs now includes propositional variables,
but much else besides. Clauses (b)-(f) are identical in the two
definitions; as a consequence, any wif of the propositional calculus
is also a wif of the predicate calculus. Thus the predicate calculus
as a language is an enlargement of the propositional calculus.
Clauses (g) and (h) introduce respectively the universal and the
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existential guantifier. and clause (/) is the usual ruling-ocut or
extremal clause.

Clauses (g} and (h) work in & mysterious way; they can be best
understood by examples. Suppose we wish to show that

(1) {x) Fx = Gx)

1s & wif. Observe first that neither * £x " nor * Gx’is a wf since * x '
15 not 2 term but a variable. Hence * (Fx - Gx) Tis not a wi either:
we require this to be so, because we wish all our wfs 1o express
propositions, and yet © Fx ' does not do this—a formula contamning a
variable will only express a proposition true or false if, loosely
speaking, that variable is tied (o a guantifier and not left hanging
in the air. Variables are to be construed as devices for cross-
reference, not names, so to sav ‘ x has property Fis not to say
anything true or false because nothing is here named. However, io
say (x)Fx ' is to say that everything has property F, and so is 1o
say something true or false.

Although * (Fx = Gx) " is not a wfl, * (Fa - Ga) ' 15 a wil, since
“Fa’and * Ga’, unlike ‘ Fx’ and ‘ Gx ', are atomic sentences. In
clause (g}, let t be the term * 2, and let A(t) be the wff ¢ (Fo > Ga)’
containing this term. Let v be the variable * x °. Then * (Fx - Gxj’
is a formula which resuits from A(t), namely ‘ (Fa- Ga)’, by
replacing at least one occurrence of ‘a’ by ‘x’ (in fact both
occurrences of ‘¢’ are replaced). Hence * (Fx - Gx) ', though not
a well-formed formula, is an appropriate A(v} for clause (g). Hence
by clause (g) the result of prefixing “(x)’ to * (Fx » Gx) ' 1s a wif:
in other words (1) is a wif.

In a similar way, by modifying * (Fa Ga)’ to ‘ (Fx - Ga)’ or
‘(Fa-- Gx)’ (i.e. by changing just one occurrence of ‘@’ {0 * x '},
we show by clause (g} that

(2) (x}Fx > Ga)

and
3) (x}Fa - Gx)

are wifs. But there is no way of showing that
(4) (xX)(Fa-> Ga)

is a wif, since clause (g) in effect stipulates that v shall occur some-
where in A(v), whilst ‘ x° does not occur in {(Fa-- Ga)’; we do
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not wish to regard (4) as well-formed, since the guantifier * (x)’
confrois no variable-occurrences.

Clause (g) takes us from a wif A(t), containing a certam term 1,
via a non-well-formed formula A(v) contaiming in place of { at some
occurrences a variable v which is not tied to a quantifier, to a new
wil (VJA(v) in which the occurrences of v are controlled by the
prefixed quantifier. In this way we secure that such expressions as
(4, " ()P, " (x)Fm’ are not well-formed.

A further stipulation of (g} 1s that v shall not occur mn Af1).
Without this stipulation,

(5) ()x)Fxx

would be well-formed. For * Fua ' 1s an atomic sentence, whence
by clause (g) as it stands * (x)Fxa " is a wil (take A(v) to be " Fxa );
taking ‘ (x)Fxa’ as A(t), ‘¢ as t,and " x " as v, for A(v) we should
have “ (x}Fxx’, whence (5) would be well-formed. We wish to rule
(5) out as well-formed, because the first universal quantifier is doing
no work, the two occurrences of * x " after * F* being controlled by
the second quantifier. In fact (5) 1s not well-formed by (g), because
“x° already occurs in ‘(x)Fxa’, and so cannot be used m an
application of (g). We can of course select “y’ as v, and so show
that
(6) (xX)Exy

is a wif,

As a further illustration of the use of (g), compare the two
formulae

(7) (X Fx = (0)Cx)

(8) ((x) Fx - (x)Gx).
Then (7) is not & wif, but (8) is. (8) can be seen to be well-formed by
clause (b), since ‘(x)Fx’ and ‘(x)Gx’ are evidently wffs. (7) is
barred from being a wif by the stipulation in clause (g} that v shall

not occur in A(t). The only possible wffs A(t) that could yield (7)
are such formulae «as ‘ (Fa - (x)Gx}’, *(Fm--{x)Gx)’, which

<

already contain the variable ‘ x’. Of course, by selecting a new
variable, say ‘ y°, we can show that

(9) ((Fy > (x)Gx)
is a wif.
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Although formulae such as * Fx ', "(Fy- (x)Gx)", “ Hxy’ do
not count as wiis by our present definition. because they are not
complete sentences expressing propositions true or false in view of
the ‘loose " variables “x " and * v 1t is useful in what follows to
have a label for them. We shall follow logical tradition, and use the

epithet ‘ propositional function ".* To be precise, 2 formula A is 2
propositional function in the variables v,. . . . . v,, for » greater than
or equal 1o O, if {v;} ... (v, )4 is a wi. Thus * Hxy "is a propo-

{y

sitional function in “ " oand v because (0(NHxy T s & wil
T(Fy - {x)Gx) 18 a propositional funcuon in ¥ because (9) is a
wil: but “(Fx - (x)Gx) " 1s nor a propositional function in “x°
because, as we have seen, {7} is not a wif. Briefly, formulae which
result from the dropping of initial quantifiers from wffs are propo-
sitional functions. In clause (g}, A{v) will be a propositional
function in v. By allowing the case » = 0, all wffs are trivially
propositional functions in no variables, so that we can use ‘ propo-
sitional function * as a broad label 1o include wffs, as we proceed
to do.

Clause (h) requires no separate discussion, since it merely
introduces the exisicnuial guantifier into our svmbolism under
exactly the same conditions as are used in the case of the universal
quantifier.

We define syntactically the two quantifiers as follows: a universal
quantifier is a left-hand bracket, foliowed by a variable, followed by a
right-hand bracket: an existential quantifier is a left-hand bracket,
followed by a reverse-E, followed by a variable, followed by a right-
hand bracket; a quaniifier is either a universal quantifier or an
existential quantifier. Then the notion of scope may be carried over
from the propositional calculus to the predicate-calculus. The scope
of an occurrence of a logical connective in a propositional function
1s the shortest propositional function in which it occurs. Thus in the
wif (9) the scope of (the sole occurrence of ) ¢ " is * (Fy = (x)Gx)} ",
which is a propositional function in “y°, not a wff. Similarly, the
scope of an occurrence of a quantifier in a propositional function is
the shortest propositional function in which it occurs. Thus in (8) the

¢

' A word about the word ‘function’ may not be amiss here: * x -+ y " is (expresses)
a numerical function of x and y, since, for given numbers x and », x + y is 2
particular number; * Fxy’ is a propositional function in x and y in the sense that,
for given individuals x and y from some universe of discourse, Fxy is a particular
proposition.
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scope of the first “(x) " 1s “{x}Fx ", and the scope of the second
“(xd s T (x0Gx T (9) the scope of {the sole occurrence of ) “ (1)
is the whole wif (9); n (6) the scope of (¥} s the whole wif (6,
but the scope of “{x)’ 1s “{x)Fxy —in this case a propositional
function, not a wif; in the propositional function “{(Fy - {(x)Gx) ",
the scope of “ (x} " 1s the wif “ (x)Gx "

Using the notion of scope, we may state the effect of clauses (g)
and (h) as follows:

(1) the scope of any occurrence of a quantifier in a wif or
propositional function will contain af least fwo occurrences
of the variable in question {one occurrence being in the
guantifier itself}y:

(1) the scope of any occurrence of a gquantifier in a wii or
propositional function will not contain any other quantifier
using the same variable.

It is in view of (1) that (4), for example, is not well-formed; for there
is only one occurrence of ' x’, in the quantifier itself. And in view
of (i) (5) and (7) are not well-formed, since in the putative scope of
the first * (x)" in each case there is a further “ {x)’. (8) escapes this
stigma, because neither of the scopes of the two quantifiers is
included in the other. The motive for requiring (i) and (ii) should
by now be clear: in virtue of (i), every quantifier controls some
occurrence of its variable, i.e. it is never vacuously used; in virtue
of (ii), every occurrence of a quantifier’s variable within its scope is
centrolled by that quantifier and not some other. To secure (i} and
(i1), we pay a certain price in the complexity of the formation rules:
our gain is a compensating simplicity in the statement of the rules
of derivation and further derived rules.

As to brackets, it should be observed that clauses (g} and (h) are
like clause (&) for * —’ in not requiring encircling brackets.
Ambiguity is eliminated by the bracket-requirements in clauses
(e)~(f). Thus (9), in which the scope of ‘(y)’ is the whole wff,
should be contrasted with

(10) ((Fy > ()Gx),

where the scope of “ () " is merely * (3)Fy . (9) expresses a universal
proposition, whilst (10) expresses a conditional proposition whose
antecedent and consequent are universal propositions., The
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distinction between them is secured by the brackets required for
‘-~ in clause {¢}. In practice as opposed to theory, we allow our-
selves, as before, to drop outermost brackets, and to drop inside
brackets where possible by virtue of the ranking of propositional
connectives introduced in Chapter 2, Section 1.

Finally, given wffs A,. . . ., A,. B of the predicate calculus. we
say that

A ... . A,FE

is & seguent-expression of the predicate calculus.

With the syntax of the predicate calculus accurately formulated,
we may state its rules of derivation fairly easily. First, it should be
pointed out that the ten primitive rules of derivation for the pro-
positional calculus are taken over in fofo, and now understood io
apply to wifs of the predicate caiculus. This secures at once that any
derivable propositional calculus sequent is also a derivable predicate
calculus sequent. For the four special predicate calculus rules, we
proceed as foliows:

UE and EI: let A(v) be a propositional function in v, and t be a
term; let A(t) be the result of replacing all and only occurrences of
vin A(v) by t. Then, given (v)A(v), UE permits us to draw the
conclusion A(t). And, given A(t), EI permits us to draw the con-
clusion (3v)A(v). The conclusion in each case depends on the same
assumptions as the premiss.

Ul and EE: let A(e) be a wif containing the arbitrary name e,
and v be a variable not occurring in A(e); let A(v) be the propo-
sitional function in v which results from replacing all and only
occurrences of e in A(e) by v. Then, given A(e), Ul permits us to
draw the conclusion (v)A(v), provided that e occurs in no assumption
on which A(e} rests. The conclusion rests on the same assumptions
as the premiss. And given (Hv)A(v), together with a proof of some
wil C from A(e) as assumption, EE permits us to draw the con-
clusion C, provided that e does not occur in C or in any assumption
used to derive C from Afe) (apart from in Afe) itself). The con-
clusion C rests on any assumptions on which (Iv)A(v) depends or
which are used to derive C from A(e) (apart from A(e)).

As to UE and EI, we must first observe that if A(v)is a propo-
sitional function in v, then both (V)A(v) and A(t), as defined, will
be well-formed. For example, takingvas‘ x’, A(v)as ‘ Fx > Gxam’
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andtas’a’, (VJA(v)is  (xX)(Fx = Gxam) and A(t)is * Fo - Gaam °,
both of which are wffs. Notice also that it does not matter if ¢
already occurs in A(v), as here * @’ already occurs in * Fx = Gxam
It 15 ewidently quite sound ic infer ° Fo-» Gaam’' from
“(x)(Fx -~ Gxam) . Notice, thirdly, that t must replace v at all
its occurrences, if only because otherwise the result will not be well-
formed. And notice, finally, that the control on EI is exactly the
control on UE, except in reverse: that is, to see whether a step of
El is sound, we may consider it in reverse order as a step of UE
and check that. For example, to pass from ‘“Foe & Gb’ to
“(Hx)Fx & Gx) ' is an umsound step of EI just because to pass
from * (x)(Fx & Gx) " to “ Fo & Gb’ would be an unsound step of
UE. (Why?) The two rules are symmetrical in this respect.

Asto Ul and EE, we must first observe that, since v does not occur
in Afe), A(v) will be a propositional function in v, since it will
contain no quantifiers with v in them but will contain v. Hence both
(v)A(v) and (dv)A(v) will be wffs. In applying Ul, therefore, we
need to select some variable not already present in the premiss: we
cannot pass from ° Fa- (x)Gx’ to ‘ (x)(Fx - (x)Gx)’, because
the supposed conclusion is not well-formed, though we can pass, if
the restrictions are observed, to ‘ (V)(Fy - (x)Gx)’. Conversely,
when we wish to use EE, to obtain a suitable typical disjunct corres-
ponding to (Hv)A(v), we should select an arbitrary name e nos
already occurring in (V)A(v), and put e in place of v at all and only
its occurrences in the propositional function A(v). In this way, we
obtain A(e) such that v does not occur in it, and such that when v
is put back in place of e we again obtain the original A(v). For
example, given as (AV)A(v) the wif ‘(Zx)(Fa > Gxh)’, we select
eas‘c’,notas‘a’or‘b’, and assume ¢ Fa- Gcb® as Afe). Then
A(v) for v as ‘x’ will indeed be the propositional function
‘ Fa-» Gxb’. It is perhaps worth remarking that UI and EFE, like
UE and EI, exhibit a certain symmetry, in that A(e) is an appropriate
typical disjunct for (Hv)A(v) in just the case that (v)A(v) follows
from A(e) by UL

The reader should observe that the restrictions here given for Ul
and EE are just the restrictions we imposed intuitively in the last
chapter. He should also satisfy himself that the applications of all
four rules made in the last chapter are correct in the light of their

precise formulation here; a sampling of the more difficult cases will
suffice. )
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EXERCISES

I For each of the following formuiae, state whether it is 2 wif, 2 DEODO-
sitiopal function not z wff, or neither. In case it is 2 wif, give =
demonstration of this from the definition of wff,

(@) (x)Gxa

(b) (x)Gva

(e} (x)Gxy

(Y (dx)Fa & Gx)

(e) (dy¥Fx & Gxy)

(F) (N By Hz)Fy v Gz 5 Hayz)

(g) (Bx)Hy Fx v Gy - (Az)Hayz)

() (AxY(HpY Fx = (2K Gz - (Ax)Hxyz))
() (Ix)(Fx > (2NGz > () Hxyu))

) (By)((Ex) Fx - (z2)(Gz > (dx)Hxyu))

[

For each of the following proposed applications of UE, state whether
it is correct or incorrect, and, if incorrect, whv,

()1 ()Y OHzXFxz & Gxz) A

P (2) (BzXFag & Gaz) 1 UE
By Q) (B2 Fxz & Gxz) A

I (2) B2)(Faz & Gbz) I UE
(ey 1 (1) (x)H2)Fxz & Gxz) A

I (2 (H2)(Fbz & Gbz) 1 UE

3 For each of the following proposed applications of El, state whether
it is correct or incorrect, and, if incorrect, why.

(a1 (1) Fba A
, 1 () (3y)Fby 1 EI
b1 (1) Fba A
1 () (3x)Fxx 1 EI
()1 (1) Fba A
I () (3y)Fya 1 EI
@)t (1) Fba A
1 (2) 8x)Fxb 1 EI
(e} 1 (1) (8x)Fxa A

1 (2) @)Ex)Fxy 1EI
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(11 4y (HExo)Fxa A
{(2) (y¥Ex)Fxx 1 EI
4 For each of the following proposed applications of Ul, state whether
it 1s correct or incorrect, and, if incorrect, why; assume that neither
‘e’ nor b’ occurs in assumpiion (1},
(@1 (3 Fab - (x)Gax
T {4y (v Fyb - (Gyxy 3 UL
by 1 (3 Fab > (x)Gax
Ty (xlFxb = () Fxx) 3 UL
() 1 (3) Fab > ()Gax
b4y ()(Fay - (x)Gaxy 3 UL
(di 1 (3) Fab -» (x)Gax
@y O Fyy - (x)Gyxy 3 UI
5 For each of the following pairs of wifs, state whether the second is an
appropriate typical disjunct for the first in an application of EE, and,
if inappropriate, why.
(o) (i) (Hx)(Fxa & (Y)Ghby)
(iiy Fba & (»)Gby
() () (Bx)(Fxa & (»)Gby)
(i) Fea & (NGey
(e} () (@x)(Fxa & (»)Gby)
(ii) Fca & (y)Gby
(d) () (Ax)Fxa & Gbx)
(i) Fea & Gbe
(e} (1) (Bx)Fxa & Gbx)
(i) Fba & Gbb
(fy () Bx)(Fxe & Gbx)
(il) Fbm & Gbm

2 SUBSTITUTION, DERIVED RULES, CONSISTENCY, AND
COMPLETENESS

The notion of a theorem of the predicate calculus is analogous to
that of a theorem of the propositional calculus. A rtheorem is the
conclusion of a provable sequent of the predicate calculus in which the
number of assumptions is zero. It follows at once that all theorems
of the propositional calculus are theorems in the broader sense. It
should also be obvious that, to each sequent proved in the previous
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chapter, there Is a corresponding conditional provable as 2 theorem
by supplementing the given proof with steps of CP. For example,
corresponding to the sequents 103 and 105 there are the theorems:

127 F () (Fx -+ Gx) o ((x)Ex » (x)Gx);
128 F () (Fx =+ Gx) - ((x)Fx > (Hx)Gx).

Other theorems, corresponding at the predicate calculus level o
the laws of non-contradiction (37), identity (38}, and excluded middie
(44}, all of whose proofs are easy, are:

129 + (x)—(Fx & — Fx);
130+ (x)(Fx -+ Fx);
131 F (x)(Fx v — Fx).

As in the propositional calculus, theorems here may be thought of as
conveying logical truths, propositions true simply on logical grounds.
An important property which propositional caiculus theorems were
seen earlier to have is that they remain logical truths whatever propo-
sitions are selected in place of P, O, R,.... we embodied this
fact in the principie of substitution (S1), that any substitution-
instance of a theorem was a theorem. It is natural here to suppose
that predicate calculus theorems will remain logical truths whatever
properties are selected in place of F, G, H, . . .. So we seek first for
an appropriate extension of the notion of substitution-instance which
will cover substitution for predicate-letters in general, not merely
propositional variables.

We may conveniently think of properties as expressed by propo-
sitional functions. Thus the property F is expressed by the propo-
sitional function ‘ Fx’ in ‘ x’; the property of being both F and G
by the propositional function ‘ Fx & Gx’ in ‘x’; the property
of bearing relation F to everything by the propositional function
“(MFxy’in ‘x’. Similarly, we may think of relations as expressed
by propositional functions in more than one variable. Thus
“(Hz)(Gxz & Gzy)’ in ‘ x’ and ‘ y’ expresses the complex relation
of bearing the relation G to something which bears G to. (If * G is
taken to be * parent of ’, then the new relation is ‘ grandparent of *.)
Then the problem of substitution is the problem of how to replace
within wifs predicate-letters followed by a certain number of terms
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or variables systematically by propositional functions in the same
number of variables.

A simple example should make this clear. Consider theorem 131,
then if © Fx~ at its two occurrences 18 replaced by any propositional
function mn * x *, we shall want to regard the result as 2 substitution-
instance. Thus, selecung * (Fx & Gx) ', we obtam

(1 O{(Fx & Gxy v —(Fx & Gx)),
or, selecting “ (v)Fxy *, we obtain
(2) CNExy v — () Fxy)),

and both these should convey logical truths as much as 131 does,
since we expect 131 to be true independently of the actual choice of
the property F.

However, certain difficulties are involved in stating the notion of
substitutiop-instance in full generality. Consider, first, the readily
proved theorem (x)Fx->(y)Fy {(compare [15). If we wish (o
replace F by the property of being both F and &, we shall need 10
put ‘ (Fx & Gx) "inplace of * Fx ", but* (Fy & Gy) " inplace of * Fy .
Or consider the theorem {x)Fx < Fa. With the same replacement
in mind, we here need to put * (Fx & Gx) "for * Fx ', but* (Fa & Ga)’
for “ Fa’. In other words, in substitution for a predicate-ietter we
shall not simply be putting the same formula at each of its cccur-
rences; what we put will in part depend on what terms o7 variables
follow the predicate-letter. Second, in order to obtain well-formed
formulae after substitution, we may need to change certain variables
occurring in quantifiers in the given propositional function. For
example, replacing * F' in ‘(xX)Fx > (WFy’ by ‘(»)Fxy  would
yield * (x}(y)Fxy - (y)(¥)Fyy ’, which is not well-formed in view of
the reduplicated ‘(y)’. Hence we should use the propositional
function “ (z)Fxz ', which clearly expresses the same property, to avoid
the variable-clash. This gives the correct * (x)(z)Fxz - (y¥z)Fyz ',

Bearing these facts in mind, let us now define quite generally a
substitution-instance. It will help to have some temporary label for
both terms and variables: let us call them simply lerrers; then o,
‘B, 'm’, ‘n’, " x’, ‘y’, etc., are all letters.

Let A be a wif of the predicate calculus, containing (occurrences
of) the predicate-letter P followed by » letters. Let Q{v,, ..., v,)
be a propositional function in » distinct variables, v,, . . ., v, such
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that no variable in a quantifier in Q(vy, . . ., v,) occurs in A. For
any set of n letters, 1,, ..., 1,, et Q(I,, ..., 1,) be the result of
replacing v; by 1, v, by Ly, . . ., v, by 1, throughout vy, o v,
Let A’ result from A by replacing each occurrence in A of PI, . . . i,
for letters 1;, ..., 1,, by Q(l,,...1,). Then A’ is said to resuls
from A by substitution.

A’ results from A by substitution, roughly, in case one predicate-
leiter in A s appropriately replaced throughout by EXPIEssions
obtained from a certain propositional function. In order to allow
for multiple substitution on predicate-letters in A, we say that A’ is
a substitution-instance of A in case there is 2 sequence of wifs such
that A 1s the first, each results from its predecessor in the sequence
by substitution, and A’ is the last. Thus A’ is a substitution-instance
of A in case it results by substitution from some wff which in turn
results by substitution from some wff . . . which in turn results by
substitution from A. As 2 limiting case, we may allow trivially A to
count as a substitution-instance of itself.

I illustrate this definition by one exampie whick is as complex as
any likely to be met with in practice. Let A be

(3) (x)Fxa - Fba) - (Ay)((x)Fxx = Fby)
and consider the propositional function

(4) (uy(Fuyz & Gzya)

in variables “y’ and ‘z°. Let P be the predicate-letter * 7’ in (3),
followed by two letters. Then (4) is an appropriate Q(v,, . . ., v, ) for
the substitution, since it is a propositional function in two variables
‘y’and ‘z’, and its only variable in a quantifier, namely ‘ 1 ’, does
not occur in (3). There are four occurrences of * F” in (3) to consider,
namely:

(i} Fxa
(ii) Fba
(iii} Fxx
(iv} Fby.
The four corresponding versions of the propositional function (4)

are obtained by replacing “ y *and ‘ z * throughout (4) by, respectively,
the first and the second letter occurring after ¢ F°. This yields
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(1Y () Fuxa & Gaxa)
(i) (wy(Fube & Gaba)
(un) (@)(Fuxx & Gxxa)
(ivY (y(Fuby & Gybaj.

Thus (1)’ ~{iv) are Q(1,, . .., 1) for the Pl, ... 1, given by (-(iv).
If we now replace in (3) (-(iv) by (iY~(1vY, we obtain

(5) () Fuxa & Gaxa) - (u)(Fuba & Gaba)y
(T Fuxx & Gxxa) - (W) Fuby & Gvbaj).

Then (5), by the given definition, results from (3) by substitution,
and 50 1s a substitution-instance of (3).

For the case where » = (, the predicate-letier P is simply a
propositional variable, and the propositional function Q(v,, .. ., vn)
simply 2 wi. The replacement then consists in systematically putting
some wif at all occurrences of some propositional variable in A,
and the notion of substitution-instance collapses into that already
defined for the propositional calculus.? Hence our earher notion is
no more than a special case of our present one.

We are now In a position to state a principle of substitution for
the predicate calculus:

(S'1) A proof can be found for any substitution-instance of
a proved theorem.

This principle 1s far from evident, and not easy to prove. Itis beyond
the scope of this book to prove it here. (The interested reader
should consult, e.g., Church {2], § 35} But a proof would consist in
showing, first, that a substitution-instance is always a wff (not a
trivial result), and, second, that a proof of A can be modified into
a proof of any substitution-instance of A in such a way that
applications of the four quantifier rules remain correct applications.
This is not in general altogether easy to show, because of the
restrictions on the rules Ul and EE. The new proof may well
involve a change in the arbitrary names employed, because an
arbitrary name absent from the original proof may be introduced
in the substitution-instance.

* However, we still need, at the predicate calculus level, to observe the restriction
that the wff substituted shall contain no individual variable already occurring in

A without this restriction the result might not be weli-formed—for example,
replacing ‘ P’ in * (x)}(Fx - P)’ by ‘ (x}Gx * leads to an ill-formed formula.

152



Substitution and Completeness

Finally, the notion of substitution-instance must be exiended to
sequents in general. This is done most simply vie the notion of &
corresponding conditional. As before, if
A, .. A FB

is a sequent-expression, its corresponding conditional is the wif
Ay (BB, )

Then we say that

A, oo AR
18 @ substitution-instance of
Ay ... A, B

if the corresponding conditional of the former sequent-expression is
@ substitution-instance in the sense defined of the corresponding
conditional of the latter sequent-expression. This leads to the
following broad principle of substitution, which includes (S'1) as a
special case:
(58'2y A proof can be found for any substitution-instance of
a proved sequent.

With this labour behind us, the derived rules T1 and 81 are
immediately forthcoming for the predicate calcuius.* They can
simply be transcribed from Chapter 2, and their justification at the
new level presents no new difficulties. As in the propositional
calculus, these derived rules greatly shorten the burden of proof.

These derived rules are illustrated in the following proofs:

132 (Fx F (x}Gx > Fx)

i (1) (x)Fx ‘ A

1 (2) Fa I UE

i (3) Ga» Fa 2 SI(S) 50
1 (4) (xNGx = Fx) LR

133 (x)—Fx | (x)(Fx > Gx)

1 (D) (xy—Fx A

1 (2) —Fa I UE

1 (3) Fa» Ga 2 SI(8) 51
1 4) (X)(Fx - Gx) 3 Ul

! We in fact allowed ourselves the use of them on occasion in Chapter 3, but
only in connection with quite elementary propositionalus calcul sequents.
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134 (dx)Fx = (Hx)Gx F (Hx) Fx - Gx)

i (D (Ex3Fx - (EGx A

2 (2 —(Hx)(Fx - Gx) A

2 (3} (x)—(Fx - Gx) 2 SKS) 3.4.1{d)
2 (4} —(Fa - Ga) 3 UE

Z (5 Fa & —Ga 4 SI(8) 2.2.5(g}
2 (6} Fa 5 &F

2 (7y —Ga 5 &E

2 (8 (Hx)Fx 6 k)

2 (9) (x)—Gx . 7 UL

1,2 {10y (Hx)Gx 1.8 MPP

L2 (11} —(x)—Gx 10 SKS) 113
1.2 (2 )—Gx & —(x)—Gx a.11 &I

I (13 — —(Ex)(Fx = Gx) 2,17 RAA

b (34 (Ex)Fx > Gx) 13 DN

132 and 133 are sequents analogous to 50 and 51, the paradoxes
of material implication. They might be called the paradoxes of
Jormal implication (the term ‘formal implication * was coined by
Russell to describe the universal quantification over a material
implication: i.e. a proposition of the form ‘ (x)}{(Fx - Gx)"). 132
avows that, given that everything has F, it follows that everything
with G has F (no matter what property ¢ may be). 133 avows that,
given that nothing has F, it follows that everything with F has G (no
matter what property G may be); thus, given that there are no
unicorns, it follows that all unicorns are deliriously happy, and also,
for that matter, that all unicorns are desperately sad. This paradox,
is, of course, only a refiection of the fact that we are using material
implication ‘-’ in our analysis of universal propositions: if Fx is
false for every x, then, by the matrix for ‘=, Fx - Gx is true for
every x, whatever the truth-value of Gx may be.

The proof of 134 deserves some scrutiny. Basically a proof by
RAA, lines (3)~(5) are devoted to drawing out the consequences
of (2).- The earlier result 3.4.1(d) cited at line (3) is

—(dx)Fx b (x)— Fx.
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A simple substitution-instance of this, taking * Fx " as* Fx - Gx ', is
—{ExHFx - Gy b ()~ (Fx = Gxj,

and this is used in connection with SI to pass from (2) to (3. (3),
by elementary reasoming, has the consequences (8) and (9}, the
first of which is the antecedent of (1} and the second of which is
shown to contradict the consequent of {1}: for we can pass from
{10y to (11) using the result 113 with the simple substitution of * G *
for © F’.

So far, we have oniy discussed substitution for predicate-letters;
but we may also on occasion require principles allowing us to
exchange one variabie for another, or one arbitrary name for another,
or one proper name for another. Such principles are easy to state,
and not difficult to prove. Let A be a wif containing a variable v,
and let w be some variable nor occurring in A. Let A be the result
of replacing all and only occurrences of vin A by w. Thenif Aisa
theorem, so is A'. (It should be obvious from the formation rules
why we require that w shall not appear in A.} This exchange can
be extended to sequents in general. Similarly, let A be a wif con-
taining the term t, and let s be some term not occurring in A. Let
A’ be the result of replacing all and only occurrences of tin A by s.
Then if A is a theorem, sois A'. Here it makes no difference whether
t and s are both proper names, both arbitrary names, or one a proper
name and one an arbitrary name; the reason should be clear—if A
is a theorem, it should hold whatever interpretation we give to t, so
that the intuitive difference between proper and arbitrary names
disappears. Again, the result extends to sequents. Both these
principles may be used tacitly in connection with TI and SI. For
example, we may take the proof of 100 to be also a proof of

Fa, (YFy = Gy} Ga,

where ‘ m’ has been replaced by ‘a’, and ‘x” by 'y’

It remains in this section to sketch the notions of consistency and
completeness for the predicate calculus, and so to do for the predi-
cate calculus what was done for the propositional calculus in
Chapter 2. In the propositional calculus, we described a property
of sequent-expressions—that of being fautologous—and showed that
all and only derivable sequents had this property, thus demonstrating
consistency and completeness. In the case of the predicate calculus,
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no property which can be described i the simple language of the
truth-table test 15 forthcoming; but an analogous, though more
complex, property of wifs can be specified—that of being rrue under
all interpreiations in every non-empty universe.

We have appealcd to the notion of a universe of discourse already.
A univérse is quite simply some set of objects: it mav be finiie, as
the universe of three objects considered in Chapter 3 was: it may be
nfinite, as the umiverse of the natural numbers, considered in
algebra, is. A non-empiy universe is a universe which contains at
least one object. The predicate caicuius makes the assumption that,
on any interpretation, we are discussing 2 non-empty universe: for
example, we have as z rtheorem (from 131 by 1064} that
(x)(Fx v —Fx), though this would not be true in an empty
universe, since it is an existential proposition. Indeed, empty
universes have such peculiar formal properties that it is better nor
to consider them.

Amn interpretation of 2 wiff In a given non-empty universe is an
assignment of objects from the universe to the ferms in the wit,
together with an assignment of properties and relarions defined for
objects in the universe to the predicate-letters in the wff (if the
predicate-letters are propositional variables, we simply assign truth-
values to them, as in the propositional calculus). For example, we
may mterpret

(6) Fa & (3x)Gax

in the universe of natural numbers, by assigning 2 to ‘a’, the
property of being even to ‘ F', and the relation of being greater
than to G . Under this interpretation, (6) affirms that 2 is even
and there is a natural number than which 2 is greater; hence (6) 1s
evidently true for this interpretation. In general we can compute
the truth-value of a wif for a given interpretation in a given universe
by obvious means; we take the variables to range over the objects
in the universe, and “ (x)( . .. x...)’ will be true in Jjust the case
that all objects in the universe satisfy the condition * (...x..0)",
“(dx)(...x...)  true in just the case that at least one object in
the universe satisfies the condition ‘(...x...)’. For the rest, we
use the propositional calculus matrices to determine the truth-
values of complex sentences, given the truth-values of their com-
ponents. This account is admittedly sketchy, but enough should
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have been said to give substance 1o the idea of a wif being rrue
under a certain inierpretation in o ceriain HOH-€MPIY Universe.

Let us now say that a wil is logically rrue if it is true under all
mterpretations in o// nop-empty universes. This is the desired
extension, for the predicate calculus, of the property of being
tautologous for wfs of the propositional calculus. If a given
universe 1s finite, we can actually /st all possible interpretations of
a wii; for the number of distinct assignments of objects, properties,
and relations is in this case finite. Hence for finite universes, a
mechanical test, analogous to the truth-table procedure, is available
for testing truth or falsity under interpretation. But clearly no such
technique is available for an infinite universe. In this resides the
fundamental distinction between the propositional and predicate
calculi.

For sequent-expressions in general, we need the following. A
sequent-expression

Ay, .. L A,FB

is logically valid if, under any interpretation in any non-empty
universe of the wifs A,, . . | A, B, whenever A,, . .., A, are all true
then so is B. It follows that a sequent-expression is logically valid
if and only if its corresponding conditional is Jogically true.

It is not too difficult a matter to show that all derivable sequents
are logically valid, and that therefore the predicate calculus is
consistent. As before, this involves a case-by-case consideration of
the fourteen rules, to show that no application of any of them leads
from a logically valid sequent to a sequent not logically valid. To
show the converse is a good deal harder. The first completeness
proof for the predicate calculus was obtained by Kurt Godel in
1930. There is an account of this proof in Hilbert and Ackermann
[7]; the interested reader should further consult Church [2], 6§ 44
and 45. The method of proof can readily be extended to the present
formulation of the predicate calculus, and we obtain the result that
any logically valid sequent is derivable from our rules. This proof
may be regarded as the borderline between elementary and advanced
logic.

Although most of this section has imitated the procedure of
Chapter 2, and most of the results concerning the predicate calculus
have been extensions of results concerning the propositional calculus,
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in the case of completeness there is an important difference. The
completeness proof in Chapter 2, Section 5, 1s such that, given a
tautologous sequent, we can actually conmsiruct from the proof a
derivation of the sequent in gquestion. But Godel's completeness
proof does not have this constructive character. Indeed, as was
pointed out in Chapter 2, there is no mechanical way, like the truth-
table test, of sorting sequent-expressions of the predicate calculus
into the logically valid and the logically invalid. This result is due 1o
Alonzo Church. and for an elementary discussion of it the reader
should consult Quine [I7], § 32. What this means in practice is
that, faced with a certain sequent-expression and wishing to know
whether 1t 1s sound or unsound, we may search imaginatively for a
proof and we may search imaginatively for an interpretation in some
non-empty universe which will render all assumptions true and
conclusion false. A proof, if one is found, can be mechanically
checked; an interpretation showing unsoundness, if one is found,
can also be confirmed to be such. But the search itself for inter-
pretation or proof cannot be reduced to rule. In this respect, the
predicate calculus differs essentially from the propositional calculus

EXERCISES
1 For the sequents mentioned below, carry out the given substitutions.
{a) In 101, for * F " substitute * Fx v Hx °, for * G’ substitute * Hxa .
(b) In 103, for * G’ substitute * (NGxy .
() In 104, for * F* substitute ‘ (Y} Fxy v Gya) .
(d) In 109, for ¢ F’ substitute * Fx - Hx’, for * G’ substitute * Hx > Fx".
(e) In 116, for * F’ substitute * (Hz)(Fxz & Gzx) .
(f) In 119, for * F’ substitute ‘ (y)Gyx °, for * P’ substitute (L)Gzcz
(&) In 120, for © F’ substitute * {(z}Fxyz'in“x "and ‘¥’
(W) In 123, for * F’ substitute ‘ Fxav(z)Kzx’, for ‘G’ substitute
“()Fzx’, for* H * substitute * (2} Fxz-» Gzy) in‘x'and ‘ p .
2 Using TT or SI where appropriate, show the validity of the following
sequents:
(@) (xX)Fx & (Ax)Gx (Ex)¥Fx & Gx)
() (xX)Fx v (Hx)Gx + (Hx)(Fx v Gx)
(c) (xX)Fx > (x)Gx F (x)(Fx -» Gx)
(d) ) Fx v Gx)F (xX)Fx v (Hx)Gx
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(e} (x3Fx > {)Gx F (B Fx - Gx)y
(FYy (BxWFx - Gx) v (0 Fx = (Ex)Gx

Prove the following theorems:
{a) v (YN(x)Fx > Fy)

(O) b (XFp > (Ex)Fx)

(¢} b By Fy = (x)Fx)

() F (E0)(HFx > Fy)

{Perhaps the hardest exercise in the book}
{g) The interderivability resuit 113 suggests that we might define the

existential quantifier in terms of the universal quantifier and
negation, in much the way that in Chapter | we defined ' w3 " iy
terms of “-» " and ' &’. Thus, for any variable v:

D F By = — (v

By this definition, we understand * (Hx) °, for example, simply as an
abbreviation for * —{x}— ’. Suppose we adopt this definition, and
accordingly drop from the predicate calculus the rules EI and EE,
ieaving ourselves with only UI and UE as primitive rules (as well,
of course, as the propositional caliculus rules). Show that from this
basis the rules EI and EE can be obtained as derived rules. (Hint:
in the (simpler) case of EI, it suffices to show that A(t) + —(v}— A(v)
can always be proved using only Ul and UE, where A(t) and A(v)
are as described at the end of Section 1.)

(b) The interderivability result 114 similarly suggests a possibie

definition of the universal quantifier in terms of the existential,
thus:
DU (v = —(Fv)—.

Show conversely that, if we adopt this definition together with the
rules EI and BEE and propositional calculus rules, the rules Ul and
UE can be obtained as derived rules.

3 IDENTITY

The remainder of this chapter is devoted to particular applications
of the predicate calculus. In the present section we study one
particular relation of special importance for logic, the relation of
identity. This relation is already familiar from mathematics, where

* This procedure is in fact adopted in many accounts of the predicate calculus.
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‘

it is marked by the (misleadingly called)} equality-sign * = " Thus
the force of *2 -+ 2 = 4" 15 that the number which resulis from
adding two and two 1s (the same or identical number as) four. In
non-mathematical contexts, identity 1s expressed usually by “is "
but since the verb ‘ to be ' has many senses, we must indicate first
in which sense ‘ 1s * expresses identity.

Consider the six Englsh sentences:

(1) Socrates is a philosopher:

(2) Paris is a city;

(3y Courage is 3 virtue;

(4) Socrates 1s the philosopher who taught Plato;
(5) Paris 1s the capital of France;

{6) Courage is the virtue I most admire;

Sentences (1}(3) are simple subject-predicate sentences; & particular
object (Socrates, Paris, courage) is said to have & certain property
(being a philosopher, bemg a city, being a virtue). We accordingly
call the “is in (1)~(3) the “ 18’ of predication. This use of ‘is* must
be contrasted with the “is’ in (4)}-(6), where rather the sense is ‘is
the same object as’ (with ‘object ' used in some broad neutral
sense). This “i1s° we distinguish as the *is~ of identity.

Aids towards recognizing the “1s * of identity are: (¢) can “is " be
replaced by ‘ is the same object as > 7—if so, “1s "1s 15 7 of identity, if
not, not: (b) can the phrases flanking ‘is * on both sides be reversed
preserving approximately the same sense7—if so, “is’ 15 “is’ of
identity, if not, not. Applying these two tests to (1)-(6) should
reveal the difference between (1)-(3) on the one hand and (4)-(6) on
the other. There are indeed certain types of expression which
regularly flank the ‘is’ of identity on both sides: first, proper
names, such as ‘ Napoleon’, ‘ Waterloo *; secondly, what gram-
marians sometimes call abstract nouns (as opposed to common
nouns), which are distinguished by lacking a plural, such as
‘courage ’, ‘ bread ’, ‘ oxygen °; thirdly, singular phrases beginning
with “ the ’, such as ° the evening star ’, * the author of Waverley "—
such phrases are often called definite descriptions: fourthly, what we
may call demonstrative words and phrases, such as “1°, “he’, “ that
book ’, ‘ this cloud ’, ‘last night’. Here are more examples of the
“is ’ of identity (or in one case ‘ was ’), flanked by such expressions:

160



Identiry
{7) The latest element 1o be discovered is uranium;
(8) That tali man is his first cousin;
(9) Last night was the firsi night of the fair:
{10y Cicero 1s Tully;
{11y Beauty is truth,

A fuller discussion of identity, from a philosophical standpoint, 15
hevond the scope of this hook. Here we are concerned with the
formal handling of the notion. To this end. we adopt from mathe-
matics the symbol © = ’ 1o represent the * is 7 of identity, and expand
our formation rules accordingly. let t and s be any terms; then
{t = 5} is mow to count as an atomic sentence. Thus ‘(g == b},
“(e==1¢)", ‘(m=n)", ‘(ea=n" are all atomic sentences in the
extended sense. In a way, * = ' Is a new predicate-letter controlling
two terms; but, following mathematical practice, we adopt the
convention of placing it berween the two terms rather than before
them : and, unlike other predicate-letters, it has a fixed interpretation.
This new language, only a slight extension of the old, is the predicaie
caleulus with identiry. In view of the other formation rules, * = ' can
appear in complex expressions in just the way that * F’, G 7, ...
appear. Thus “ (x)(x = x) ", “ ()WH(Fx & (x = y)) > Fy)’ are wiis
of the extended language.

To handle identity in proofs, we introduce two simple rules, a
rule of identity introduction { =T) and a rule of identity elimination
( =E). For any term t, the rule =1 permits us to introduce into a
proof at any stage t = t, resting on no assumptions. The idea should
be clear: anything isitself. as a matter of logic; hence t = tislogically
true, and so can appear without assumptions. Now let t and s be
terms, and A(t) a wif containing (occurrences of) t; let A(s) be the
result of replacing at least one occurrence (but not necessarily all)
of tin A(t) by s; then, given the premissest = s and A(t), the rule =E
permits us to draw A(s) as conclusion, resting on the pool of the
assumptions on which the premisses rest. Again the idea is straight-
forward: if t is s, then, given A(t)—a proposition about t—we can
infer A(s)—the corresponding proposition about s. For example, if
beauty is truth, and beauty is in the eye of the beholder, then truth
is in the eve of the beholder (an argument designed to show that

. Keats was wrong).
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Putting these rules to work, we have:

138 a;::,b,iwhma

I (Ya=8§ A
(Da=a =T
I Bb=a 1,2 =E
136 a=b&b=ctog=rc

F Ne=b&b=rc A

P (Dya=15h I &E
I Ob=c¢ i &F
I dya=c¢ 2.3 ==

137 Far (3x)(x = ¢ & Fx)
(a) Fa b (Ax)(x = a & Fx)

1 (1) Fa A
(DNa=a ==
I Bye=aé& Fa 1.2 &1

P 4y (Hx)fx =0 & Fx) 3El
0y (Ax)(x = a & Fx)}+ Fa

P (DEx))x=a& Fx} A

2 b=a& Fb A

2 Hb=a 2 &FE

2 (4) Fb 2 &E

2 (5 Fa 34 =F
1 (6) Fe 1,2,5 EE

The proof of 135 may be perplexing: but think of (1) ‘e = b’ as
the premiss t = s, and (2) “‘a=a” as A(t); then 3) “b=10a"is a
suitable A(s), since it results from (2) by replacing the first occurrence
of “a’in (2) by ‘ b’, in accordance with the identity (1). The step
of =E in 136 is similar. According to 137, the proposition that an
arbitrarily selected object @ has F is interderivable with the propo-
sition that there is something which is @ and has property F.
As theorems concerning identity, we obtain
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138 Fixix = x)
(lya=a ==k
(2) (x)(x = x) IUl
136 F () v)x = y- y = x}
140 FQO()Hx = 3 &y = 2+ x = 2)
These last can be obtained by supplementuing the proofs of 135 and

136 with steps of CP followed by steps of UL
Itis worth remarking that if, for a step of =E, the terms are given

by SI using 135 (after a change of lettering if necessary).
Comnsider now the argument (adapted from Quine [17])
(12) Only Smith and the guard at the gate knew the password ;
someone who knew the password stole the gun; there-
fore either Smith or the guard at the gate stole the gun.

This i1s evidently sound, but its soundness cannot be shown in the
predicate calculus without identity. Bearing in mind the ususal force
of “only’, the first premiss of (12} means

(13} Evervone who knew the password either was Smith or
was the guard at the gate.

In (13), the two “was’s * are “ was’s * of identity. Hence, vsing ¢ K’
for knowing the password “m’ for Smith and ‘ n’ for the guard at
the gate, we transform (13} into

{14y YKx > x=mvx=n).
Using * S’ for stealing the gun, we must prove the sequent

1l (XYEx->»x=mvx=mn), (dx(Kx & Sx)+FSmv Sn

1 (OHKx»x=mvx=mn A

2 (2) (Ix}Kx & Sx) A

3 {3) Ke & Sa A

3 (4) Ka 3 &E

3 (5) Sa 3 &E

1 (6 Ka-~a=mva=n 1 UE
1,3 (NMa=mva=n 4,6 MPP
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& {8y a = m A

3.8 (9 Sm 58 =E

38 16y Smv Sn 9 vi

i1 (Ilya=mn A

3,11 (12) Sn 511 =E

3,1t (13 Smv Sn 12 vi

1.3 (14) Smv Sn 7.8,10,11,13 vE
1,2 (15 Smv Sn 2,314 EE

After assurmung the typical disjunct at line (3} corresponding to line
(2), we obtain (7) that either ¢ is m or ¢ is n. On either supposition,
it foliows that m stole the gun or n stole the gun. Hence by vE and
EE (lines (14) and (15)) we obtain the desired conclusion.

This argument illustrates the increased expressive power we obtain
by adding identity to our list of logical notions. For another
example, consider first the following derivable sequent:

142 (Tx)Fx b (TO(@W)(Fx & Fy)

1 () (Ex)Fx A

2 {(2) Fa A

2 (3) Fa & Fa 2,2 &t

2 (4) (3yNFa & Fy) 3 El

2 (5 (dx)dy)Fx & Fy) 4El>

I (6) @x)(Ey)Fx & Fyy L2LSEE

(The result can in fact be strengthened to an interderivability result.)
it follows from the validity of this sequent that if only one object
has F, then (x)(Ey)(Fx & Fy}; in other words, when we use distinct
variables * x* and ‘ y ’ it does not follow that there are corresponding
distinct objects. In order to express that there are at least two
distinct objects with property F, we need the identity-symbol:

EX)EY((Fx & Fy) & —(x = y))
—there is an x and a y both with F which are not identical.?

* This point is important if our use of variables is to be properly understood. If
someone killed himself, then someone killed someone; this becomes for us the
theorem (Hx)Kxx—(Hx)(Hy)Kxy. If we wish to say that someone killed some-
one other than himself, we need to write * (AxXIy}Kxy & —(x = y))’, and this
will not foliow from (Hx)Kxx. i
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Similarly, to say that there are at least three things with F we can
write

HYEW)EN I EFy & Fz & —{(x =y} & —(x = 2} & —{y = z}).

(For the sake of clarity, I here carelessly ignore the inner bracketing
of the complex conjunction.} In general, for any number . it should
be obvious how we can say that there are at least » things with F,
using essentially the identity-symbo! in the analysis.

If we can translate ° there are a7 Jeast n things with F°, can we
perhaps translate also * there are exactly » things with F’'7 Let us
begin with * there is exactly one thing with F’ or * there 1s one and
only one thing with F7 or ‘ there is at least one and a7 mosi one
thing with F°. To say ® there is at least one thing with F’ is simply
to say (dx)Fx, so that the problem reduces to translating ‘ there 15
at most one thing with F.

To claim that gf most one thing has F i1s to claim (in idiomatic
but misleading English) that any two things with F are the same
thing. In our symbolism it is

(15) ()N Fx & Fy =+ x = y)

—take objects x and y; then if both have F they are identical. This
formula allows there 1o be nothing with F, and one thing with F;
but if there are more than one, it becomes evidently false. Hence (15)
represents the claim that ar most one thing has F.

To say, therefore, that exactly one thing has F is to say

(16) (Ex)Fx & (X} y)Fx & Fy» x = y}.
Now (16) is actually interderivable with the briefer and neater
(17 (Ex)(Fx & () Fy > x = y)).

(17) affirms that something has F and anything with F is that very
thing: another way of saying that exactly one thing has F. Yet a
third equivalent, which may be clearer still, is

(18) (Ax)(Fx & —(@y)NFy & —(x = y)))

—there is something with £ and nothing eise with F.
Let us agree to use the notation * (8,x)Fx " as an abbreviation for,
say, (17 ((16) or (18) would do as well}: we may call this new symbol
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a numerically definite quantifier, and read * there is exactly one x with
F7 or “there is a umgue x with 7.

If now we wish to say that there are exactly rwo things with F,
several courses are open. Perhaps the simplest is to write

(I9) @) EWWFx & Fy & ~(x =) & )W Fz57 = x v 2=y}

—~there are distinct objects x and y, both with F, such that anything
with Fis either the one, x, or the other, y. Alternatively, we may use
the already introduced symbol * (3,x) ", and write

(20) (Fx0)(Fx & (A ) (Fy & —(x = ¥)))

~there is something with F such that there is exactly one thing
with F not the same as it: clearly equivalent to the claim that exactly
two things have F. We might wish to abbreviate (20) by using a
second numerically definite quantifier ¢ (J,x)Fx .

This procedure can be extended to any finite number: that is,
for any number n, we can find an expression in the predicate calculus
with identity which asserts that exactly n things have F. We shall
not pursue this development here, however, but revert finally instead
to a discussion of the handling in argument of definite descriptions
(singular phrases beginning with * the 7).

In argument (12) of this section appeared the definite description
“ the guard at the gate . We handled it in our translation exactly as
if it had been a proper name like * Smith °, and used “n . Here, we
were able to show validity by this approach; but that is not always
so. Consider, for example, the argument (due in essentials again to

Quine [17])

(21} The author of the Iliad wrote the Odyssey; therefore
someone wrote both the Iliad and the Odyssey.

If we treat “ the author of the Iliad * as a proper name, and represent
it by “ m’, say, the soundness of the argument does not emerge. The
premiss becomes ‘ Om’ and the conclusion ‘ (Ax)(Ix & Ox)’, and
the corresponding sequent is not derivable. Clearly, the soundness
of the argument hinges here on the property involved in the definite
description, the property of writing the Iliad, and this property will
have to emerge in our analysis of the premiss if we are to show
validity. Reflection on the content of the definite description in (21)
suggests that the premiss can be taken to afirm that exactly one
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person wrote the Ihad and fhar person wrote the Odvssey, Hence
the premiss becomes

(22) (Fx)(Ux & Ox) & (3)Fv = x = ¥))

—someone wrote the liad, and wrote the Odyssey, and further that
person is unigue in having written the Iliad: the last clause expresses
his unigueness in the manner of {17) above, and so catches the force
of the definite description. But from (22) the conclusion
(Ax){ix & Ox) foliows at once by ST using 111,

The treatment of definite descriptions in (22} is of considerable
importance in logical analysis; due to Russell, it has come to be
known as Russell’s theory of definite descriptions. It raises philo-
sophical probiems, which are, however, bevond the scope of this
book. Here it should be observed that, as the contrast between (12)
and (21) shows, there is nothing obligatory about Russell’s analysis:
often, in testing for validity, it suffices to consider definite descrip-
tions entirely on a par with ordinary proper names. Roughly, we
may say that how we handie definite descriptions depends on how
much of the internal structure of propositions we need to reveal in
order to validate arguments in which those propositions occur. And
this in turn tells us something about the logical form of propositions.
There is nothing final or absolute about our analysis of ordinary
sentences into logical notation. For the purposes of revealing the
validity of arguments, the same sentence may in one reasoning context
be represented simply by © #° (if validity hinges on propositional
calculus structure alone) and in another by a complex predicate-
calculus wiff; and similarly a definite description inside a sentence
may in one context be represented simply by ‘m’ and in another
require to be analysed more fully by means of Russell's theory of
descriptions. We can perhaps express this point by saving that the
logical form of a sentence is always relative to a given arguing
situation. Or perhaps it would be better not to speak of the logical
form of sentences at all, but only of the logical form of arguments
in which sentences are used.

EXERCISES
1 Prove the validity of the following sequents:
(@) Fa A+ (x)(x = a-» Fx)
b)Y F YY) Fx & x = y-> Fy)
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[

(yb=unac=qatb=7

{(dya = bt Fo-c— Fb

(e)a=btc= gt c=05

(Y H{Ex)x = a)

Prove the soundness of the following arguments by translating them

into the symbolism of the predicate calculus with identity and showing
the validity of the corresponding sequentis:

() All murderers are insane; Jekvll is a murderer; Jekvil is Hyde;
therefore Hyde is insane.

{b) No murderers are sane; Jekyll is 2 murderer; Hyde is sane; there-
fore Jekvil is not Hyde.

(¢} Only Tom and Jane are dancing; Tom and Jane are both doing the
twist; therefore everyone dancing is doing the twist.

() There is at most one unscrupulous head of state; Mao Tse-tung
is an unscrupulous head of state; Johnson is not Mao Tse-tung:
therefore Johnson is not an unscrupulous head of state.

Establish the following interderivability resuit (compare (16) and (17)

of the text):

(@ (AXFx &N Fy>x = NI {(E)Fx & (O Fx & Fy > x = )
(Hint: SI using (¢} of Exercise | may shorten the labour.)

Write down an expression from the predicate calculus with identity

with the meaning:

(a) there are at most two things with F;

(b) there are exactly three things with F.

Using Russell’s theory of definite descriptions, establish the soundness
of the following argument:

(@) The author of Mein Kampf died in 1945 ; Hitler wrote Meir Kampf,
therefore Hitler died in 1945,

4 THE SYLLOGISM

The predicate calculus was undiscovered 100 years ago. It owes its
development to logicians working at about the turn of the present
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century, 1n particular to Gottlob Frege and to Russell. For well over
2,000 years before that, some of the same logical material was handied
by the theory of the syllogism, which we owe 1o Aristotle: virtually
nothing was added to it in that period. There can today be no
doubt that predicate calculus has replaced the svilogism as an
instrument for serious logical work; predicaie calculus is to svilogism
what a precision tool 1s to a blunt knife. (None the less. whenever a
new piece of equipment is introduced, there will always be found
those who prefer the outdated machinery with which they are
familiar; and predicate calculus is unquestionably harder to learn.
There are no reasons other than historical ones for studving the
syliogism ; but this theory has been of importance in the history of
both logic and philosophy, and perhaps therefore deserves a place
in a modern logic course. Our treatment will be brisk, since the
material may be found in other works (for example, Joseph [8]
or Stebbing [221); but I shall try also to clarify the relation between
syllogisms and predicate caiculus, about which there is dispute (see
Strawson [23]).

The theory of the syllogism studies just four types of proposition.
which we distinguished in Chapter 3, Section 1: (i) Evervthing with
F has G, (x)}{Fx - Gx), which we call a universal affirmative and
symbolize A(F, G); (ii) nothing with F has G, (x{Fx > —Gx),
which we call a universal negative and symbolize E(F, G): (iii) some-
thing with F has G, (Hx)(Fx & Gx), which we call a particular
affirmative and symbolize I{F, G); (iv) something with F has not G,
{(dx)(Fx & — Gx), which we call a parricular negative, and symbolize
O(F, G). In syllogism, as opposed to predicate calculus, we analyse
the structure of these propositions no further; we merely isclate the
two properties involved, and record the rest in one of the symbols
‘A, CEC, T, “O°. It is customary, but unfortunate from our
standpoint, to call the letters ¢ F', * &, . . . rerms; in this section, I
shall follow this practice and hope that the generated ambiguity is
not disastrous.

The basic logical relations between the four forms are traditionally
set out in a diagram, called the square of opposition (see page 170).
The meaning of the terminology in the square of opposition was
given, at least at the propositional calculus level, in Chapter 2,
Section 3. In view of the discussion there, we may embody the
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contraries

A(F, G) E(F, G
® P
\ & o !
QQQ. . xO(kz:// o |
¢ ¢ & &
i PN 7/ T
B ey I
‘é’ //(S \\%'é:r !
k\\‘u Y
& . Y
subconiraries P
I(F, G) O(F, G)

Sguare of opposition.

claims made in the diagram in the six principles:
(1) —(A(F, G) <> O(F, G)) (A and O contradictories);
(Z) —U(F, G)=—E(F, G)) (I and E contradictories};
(3) —(A(F,.G) & E(F, &) (A and E contraries);

(4) KF, GyvOF, &) {I and O subcontraries);
(5) A(F, Gy IF, &) (A implies I};
(6) E(F, Gy~ OF, &) (E implies O}-

These principles are not independent of one another. For example,
given (1) and (2) by propositional calcuius reasoning alone we can
deduce (4) from (3) or (3) from (4), and (5) from (6) or (6) from (5)
—this is left as a pretty exercise.

Thus the traditional view is that A and O must have opposite
truth-values in all circumstances, and so must I and E ((1) and (2)).
A and E cannot both be true, but may both be false—indeed will
be both false in case I and O are both true; conversely I and G may
be both true, and will be in case A and E are both false, but cannot
be both false ((3) and (4)). Whenever A is true, so is I, and whenever
E 1s true, so is O ((5) and (6)). Consideration of simple examples
will support this doctrine.

In the square of opposition, the order in which the terms * F’ and
* G’ are given is considered to be fixed throughout. However, there
are traditional principles, known as laws of conversion, concerned
with interchange of term-order. We have in fact

(7 I(F, G) > (G, F)
(8) E(F, G) ~ E(G, F).
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The converses of (7} and (8) foliow from (7) and (8) by the exchange
of “ Fand * G, so that both conditionals can at once be strengthened
to biconditionals. (7) is known as the law of the simple conversion
of I, and (8) as the law of the simple conversion of E. The conversion
is simple in that an I-form converts into an I-form and an E-form
into an E-form. There are no such principles for A- and O-forms:
for we clearly have neither A(F, G+ A(G, Finor O(F, Gy O(G. F,
However, for A we have

(9) A(F, G) (G, F}.

((9) is a consequence of (5) and (7) by propositional calculus
reasoning.} (9} is sometimes expressed by saying that the A-form
converts per accidens nto the I-form, and called the law of the
conversion per accidens of A. The converse of (9} is not obtainable.
and there is no such principle at all for the O-form. Hence I. E,
and A are all said to convert, but O is said not to convert.

Other traditional laws, such as principles of obversion, depend on
the introduction of negative terms * —F’, * —G’, etc. Such terms
are pot required for the Aristotelian theory of the syllogism, so we
shall ignore them here. The interested reader should consuit
Joseph [8] or Stebbing [22].

Unlike the principles enunciated so far, a syliogism is concerned
with three terms, say “F’, *G’, and ‘ H'. To define a svilogism
precisely, let three terms P, P,, and P, be given, and let us call P,
the minor term, P, the middle term, and P, the major term. Then a
syliogism is a sequence of three propositions (the first two calied
the premisses and the last the conclusion) each of either the A~ E-
I-, or O-form, such that the conclusion contains the minor and major
terms in that order, the first premiss contains the major and middle
terms, and the second premiss contains the minor and middle terms.
The first premiss, since it contains the major term, is the major
premiss, and the second premiss, since it contains the minor term, 1s
the minor premiss. The middle term appears in both premisses but
not the conclusion. For example,

(10) A (F, H)
I (H, G)
O (G, F)
can be recognized as a syllogism, since it concerns three terms ¢ F’,
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‘G, and * H such that of the two appearing in the conclusion the
first appears in just the second premuss and the second in just the
first premiss (in particular, we recognize * F° as the major term since
it appears in the first premiss and * & as the minor term since it
appears in the second premiss), whilst the third term appears in
both premisses but not in the conclusion (hence * H° is here the
middie term}. We can thus take P, as “ G, P, as * H " and P, as
CF’, and the definition is satisfied. This example incidentally
determines a convention for writing svllogisms.
Consider now

(11) A(H, F)
I(F, G)
oG, H).

This can also be recognized as a syllogism, in which * F7 1s muddle
term, * G 7 1s minor term, and ° M ' is major term. It1s in fact closely
related to {10}, in that 1t 1s obtained from (10) by merely exchanging
“F’and * H'. There is an obscurity in traditional accounts of the
syliogism as to whether (11} counts as the same syliogism as (10} or
not. Here, we regard them as distinct syllogisms, but as exhibiting
the same pattern.

Since there are indefinitely many terms, there are indefinitely many
distinct syllogisms; but there are only finitely many distinct patterns
of syllogisms. To see this, let us agree to fix the letters of the con-
clusion as * F’ and * H ' in that order, and use ° &’ for the third
term: then © F’ 1s the minor term, ‘ G’ the middle term, and ‘ #°
the major term. Since by definition the order of terms in the con-
clusion is fixed, there are just four possible wavs of permuting the
two terms in the two premisses, as the following diagram shows:

1 11 il v
Major premiss: .. (G, H) .. {H. &) ..(G. H) ..(H, &
Minor premiss: .. (F,G) .. (F,.G&) ..(G.F)y ..(G F)
Conclusion: L (FHYy (FHY .. (FFHy ..(FH

These four ways are the four figures of the syllogism. In Figure I,
there are four possible major premisses (A, E, I, or O), four possible
minor premisses, and four possible conclusions. Hence there are
4 X 4 X 4 = 64 possible syliogisms. The same calculation holds
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for the remaining three figures, so that in all we have 4 > 64 = 256
possible svliogisms, for the fixed letters “ F°, “G°, and " H . Any
syllogism can be obtained from one of these 256 by re-lettering; thus
both (10) and (11} are re-letterings of a syllogism in Figure IV {this
is most easily seen by inspecting the lay-out of the middle term).
Hence there are exactly 256 distinct patterns of syliogism. We may
call the 256 actual syllogisms obtained by fixing * F', " &, and * H~
in the above manner the srandard instances of those patterns,

It is of course essential to this calculation that the order of terms
i the conclusion be fixed by definition. For example,

(12) A (F.H)
I (H,G)
O (F. G}

obtained from (10) by altering the order of ‘' F’" and ‘G in the
conclusion, is nof a syllogism since the second term * G in the
conclusion does not appear in the first premiss. I, however, we
alter the order of premisses as well, to obtain

(13) KH. G)
A(F, H)
O(F, G).

the result is a syllogism (¢ 5’ still the middie term, * F’ now minor,
and ° G’ major): but, whilst (10) was in the pattern of Figure IV,
(13) is in the pattern of Figure I. Thus an old dispute, traces of
which occur in quite recent books on traditional logic, as to whether
there are three or four distinct figures, can be seen to have arisen
out of an uncertainty in the definition of a syllogism.

The main burden of traditional logic is to distinguish, of the 256
possible patterns, which are valid and which invalid. Two quite
separate approaches are used, which vield the same result. One
method is to lay down very general principies against which each
pattern can in turn be checked. One such principle is that no
conclusion follows from two (universal or particular) negative
premisses. This principle alone invalidates 16 patterns in each
figure, or 64 in all. We shall not state these principles here, but they
may be found in the Exercise at the end of this section. The second
method, which is Aristotle’s own, is to accept as valid certain * self-
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evident ~ patierns in the first figure and then, using such principles
as (1)-(9), 1o deduce the vahid patterns of the remaining figures.
This method is traditionally known as reduction to the first figure,
and is said to take two forms, direct and indirect reduction. Roughly
speaking, in indirect reduction the vahd pattern 15 deduced by
RAA—a contradiction is derived from the supposition that the
pattern does nof hold good, whilst in direct reduction this 1s not so.
Reduction is of great historical interest, as being perhaps the
earlicst known attempi to derive conclusions systematically from
given assumptions. Though Aristotle’s presentation 1s crude and
informal by modern standards of rigour, it is possible to follow the
outlines of his programme and derive the valid syllogisms as con-
clusions, by purely propositional calculus reasoning, from a very
small set of syllogistic assumptions. A good account of such a
treatment, as of traditional logic in general, may be found in
Lukasiewicz [12].

it turns out in fact that there are only 24 valid patterns of syllogism,
6 in each figure. Before tabulating these, however, I wish to relate
the theory of the syllogism to the predicate calculus.

A mnatural question to begin from 1s: if we transiate principles
(1)=(9) into the predicate calculus notation, using the translations
indicated at the beginning of this section where the four traditional
forms were introduced, are the resuits theorems of the predicate
calculus or not? The answer is that some are and some are not; to
see why some are not, it will be best to begin with (4), which translates
into

(14) (dx)(Fx & Gx) v (Hx}(Fx & —Gx).

This is not a theorem of predicate calculus; nor should we wish it
to be; for it is easy to prove the following result:

143 (Ex)(Fx & Gx) v (@x){(Fx & —Gx) F (Hx)Fx,

which shows that (14) is interderivable with the bald assertion that
something has F.* Hence if (14) were a theorem, it would be a
theorem that something had F, for any property F, which is clearly
absurd. In accepting (4) as a principle of logic, the traditional
theory overlooks the possibility that there may be nothing with F.
Hence I(F, G) and O(F, G) are not strictly subcontrary, as traditional

1 For proof, compare the proof of the similar (propositional calculus) sequent 45
in Chapter 2, Section 2.
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logic maintains, since they will both be false in just the case that
there is nothing with F. (It is true neither that some unicorns are
fat nor that some unicorns are not fat)

Let us call a term * F’° empty if there is nothing with F (ie. if
—(Hx)Fx). Then traditional logic makes the assumption that no term
is empty. Hence in general we can only obtain in predicate calculus
the results of the theory of syllogism on certain existential assumptions.
Thus we obtain (4) in the form (14) on the assumption (Hx)Fx, as
143 reveals. Corresponding to (1) and (2} we can prove

144 b —((x){(Fx » Gx) < (xX)(Fx & —Gx))
145 F — (X0 Fx - —Gx) ~— () Fx & Gx))

—here no existential assumptions are required. For (3), however,
the strongest result obtainable is

146 (Hx)Fx b —((x)(Fx - Gx) & ()(Fx »—Gx)).

It is not hard to see why the existential assumption is required. If
nothing has F, then by sequent 133 both (x)(Fx - Gx) and
(xX)(Fx - —Gx) will be true (146 can in fact be strengthened to an

interderivability). Similarly, for (5) and (6} we obtain at best

147 (Hx)Fx F (x)(Fx > Gx) > () (Fx & Gx)

148 (Hx)Fx F(x)(Fx » —Gx) > (Hx)(Fx & —Gx),

for if mothing has F, it will be true that (x)(Fx - Gx) and that
{(X)(Fx - —Gx) by 133, yet evidently false that (3x)(Fx & Gx) and
that (3x)(Fx & —Gx). (7) and (8) become theorems without

existential assumptions, whilst (9) again requires that (Hx)Fx be
assumed.

A square of opposition can be formulated for the predicate
calculus, in which the traditional relations do hold, by using in
place of the A-, E-, I-, and O-forms the simple quantifier-forms
C(OFx’, “(x)—Fx’. “(dx)Fx°, and ‘(dx)—Fx’. For we can
prove as theorems all of

149 F —((x)Fx > (4x)— Fx)
150 + —((x)— Fx < (x)Fx)
151 F —((x)Fx & (x)— Fx)
182 F(dx)Fx v (Hx)— Fx
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83 F (O Fx - (Hx)Fx
184 b (x)— Fx - (Hx)— Fx
(proofs are elementary}. 152 should be compared with (i4), the
corresponding traditional result. 152, unlike (14}, does not entail
that something has 7, but it does entail that there is something. That
something either has F or does not: hence 152. Thus 157 reveals
clearly the dependence of predicate calculus upon interpretation in
non-empiy universes of discourse. 1f there were nothing at all, 152
would be false. But the theorv of the syllogism makes the far more
startling assumption that any rerm is non-empty, that every property
has mstances.
In order now to exhibit the valid patterns of syllogism, we adopt
a convement shorthand whereby merely the figure and type of
proposition appear. Thus * I EIO 7 refers to that pattern in Figure |
in which the major premiss is E, the minor I, and conclusion O.
The standard instance of this pattern is, therefore,
(15) E(G, H)
I{F, G)
O(F. H).
By the corresponding predicate calculus sequent to a syllogism, we
mean the sequent in which the two premisses of the syllogism appear
(translated) as assumptions and the conclusion of the syllogism
(translated) as conclusion. Thus the sequent corresponding to (15) is
(NCGx > —Hx), (Ax)(Fx & Gx) + (Ix)(Fx & — Hx).
The following table gives the 24 valid syllogistic patterns by figure;
in deriving the sequents corresponding to the standard instances of
these patterns, we require extra existential assumptions in nine cases,
as shown in the table:

I AAA 11 EAE TIHI AAL §1V AAL
I AlI II AEE ITT ATY IV AEE
1 EAE 1 AOO HIIAL  $1V EAO
1 EIO I EIO 1 IITEAOC IV EIO
*1T AA1  *1I EAO I EIC IV IAI
*1EAQ *II AEO HI OAO *1V AEO
* : requires as added assumption (Hx)Fx
T . v s ) (Hx)Gx
§: . o .- (HxyHx.
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The patient reader who has carried out all earlier exercises has
already shown the validity of 13 of the corresponding seguents (102,
3.2.2ar(dy, 106, 3.3.2a{(g)). He might like now to identify
these 13 with 13 in the above table. Existential assumptions are
required for exactly those nine valid patterns of syllogism in which
a particular conclusion is drawn from two umversal premisses, and
it is not hard to see why. For if all three terms of the syllogisms are
empty, the universal premusses will be true by 133 whilst their
conclusions will be false. However, we never require more than
one existential assumption to show vahidity. For example, in the
case of IV AAT we can derive in the predicate calculus

158 (Hx)Hx, (W Hx - Gx), (xGx = Fx) F (Bx)}Fx & Hx),

for from (Zx)Hx and {)(Hx - Gx) 1t follows that (Hx)Gx, and
from (Hx)Gx and (x){(Gx - Fx) it follows that (dx)Fx, by 105.

From these results the relation between the traditional doctrine of
the svllogism and the predicate calculus emerges. The square of
opposition principles, the laws of conversion, and the 24 valid
patterns of syllogism are 2l derivable as theorems or sequents of
the predicate calculus. Admittedly, in some cases special existential
assumptions need to be made. But rather than as a sign of any
fundamental discrepancy between the two, this may be viewed as a
situation in which predicate calculus helps to make explicit the
foundations on which the theory of syllogisms is based. The
traditional theory, in fact, is thar fragmen: of the predicate caiculus
in which four forms of proposition are selected for special study, it
being assumed also that the terms appearing in these forms are not
empty. The predicate calculus is the broader study, at least in the
respect that it countenances empty terms; in previous sections, we
have seen how it enables us to handle arguments in which propo-
sitions appear which are not in any of the four traditional forms;
and in the next section, we shall see how it also enables us to deal
formally with properties of relations, which lie outside the scope of
the theory of the syliogism.

EXERCISE

~Let us call the first term of an A, E, 1, or O proposition its subject, and
the second term its predicate. Let us also agree to call the predicates of
negative propositions and the subjects of universal propositions distributed,
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whilst the predicates of affirmative and the subjects of singular propositions
shall be undistributed. Using ‘4’ for * distributed” and ‘u’ for * un.
distributed °, these agreements are shown in the following table:

A(F, G) E(F, G}
d u d d
I (F,Gh OF, Gy
u U u d

The general principles of the syllogism may now be staied as follows:
P p

A Rules of Quantity
I No term is distributed in the conclusion of 2 valid syllogism unless it
is distributed in the appropriate premiss,

2 The middle term of a valid syliogism is distributed at least once !

B Rules of Quality

I The conclusion of a valid syllogism is negative if and only if one of
its prernisses is negative.

2 There is no valid syliogism with two negative premisses.

Show informally from these rules:

(@) that no valid syllogism contains two particular premisses (Hint: the
only possible combinations are II, 10, OI, and OO0, of which the
last violates B2 and the first, by the table of distribution, violates A2.
In the other two cases, by Bl the conclusion must be O or E if the
syllogism is to be valid, in either of which case its predicate is
distributed, and so by Al is distributed also in the major premiss:
a contradiction follows);

(b) that no valid syllogism with a particular premiss has a universal
conclusion (Hint: if the conclusion were A, both minor and middie
terms would need to be distributed in the premisses, by A1 and A2;
and if the conclusion were E, both minor, major, and middle terms
would need to be distributed in the premisses, by Al and AZ: use
Bl and B2 to show that no permissible combination of premisses
allows this);

(c) that, of the 256 possible patterns of syllogism, B2 rules out 64 as
not valid, the result of (a) rules out a further 48, rule B rules out a
further 72, and the result of (b) rules out a further 24 {thus a total
of 208 patterns are already shown to be invalid);

* To violate this rule is to commit what is sometimes called the fallacy of un-
distributed middle.
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{d) that a valid syliogism 1 Figure I must have an affirmative minor
premiss and & universal major premiss;

(¢} that a valid syllogism in Figure JI must have one negative premiss
and the major premiss must be universal ;

(f} that a valid syllogism in Figure IIT must have a particular conclusion.
and, if the conclusion is negative, so is the major premiss.

(In virtue of ()-(f), of the 48 patterns remaining for consideration
after (¢}, 18 are shown to be valid in Figures 11T and 18 are shown o
be invalid: of the remaining 12, 6 can be shown to be valid in Figure TV
and the reraining 6 not to be valid by consideration of each case—there
are nio simple rules for Figure IV

5 PROPERTIES OF RELATIONS

If we select a sentence and drop from it a proper name, we obtain
a predicate; this predicate, we say. expresses a property. For example,
if we drop the proper name * oxygen * from © oxygen is an element °,
we obtain the predicate * . . . is an element * expressing the property
of being an element. Or if we drop ‘ Mary’ from the sentence
“ everyone likes Mary ’, we obtain the predicate ¢ everyone likes . . .°
expressing the property of being liked by everyone. In the predicate
calculus, predicates become propositional functions in one variable:
being an element might be expressed by * Ex’ in “ x ’; being liked
by everyone by ‘ (y})Lyx ' in ‘x’.

If we drop two or more proper names from a sentence, we obtain
a (dyadic or polyadic) relational expression, which we say expresses
a relation. For example, if we drop ‘ Brutus’ and ‘ Caesar ’ from
‘ Brutus killed Caesar’, we obtain the dyadic relational expression
‘... killed . . ., which expresses a certain relation. In the predicate
calculus, relational expressions become propositional functions in
two or more variables: the relation of killing might be expressed by
‘Kxy’in‘x’and‘y"

Propositional functions in any number of variables can be turned
into wifs expressing propositions in two main ways, which may be
combined: we may replace the variables in them by terms, or we
may prefix quantifiers. Thus from ‘Kxy’ we obtain the wf
‘(x)Kxm’ by combining these approaches.

I define neither properties nor relations. These notions are
supposed to be understood by examples. The process of explanation
has to stop somewhere (though it does not in fact have to stop
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here). For the rest of this section, I shall follow normal logical
practice in using * R’ in place of * F’ for relations. * B* of course
counts as a predicate letter, along with ‘F’, G, “H’, .. .- butit
will help to emphasize that it is relations with which we are dealing.
Only dyadic relations (expressed by propositional functions in twe
variabies) will be considered.

We shallin fact define various important properties which relations
may have, and then study the interconnections beiween these
properties. First, a relation R is said to be symmetric if, for any x
and y, if R holds between x and y then R holds between y and x;
in symbols, R is symmetric if and only if

(1) ()N Rxy > Ryx).

The relation of being the same age as is symmetric; for if ¢ is the
same age as b, then b is the same age as g, for arbitrary ¢ and b.
The relation of being either the brother or sister of is symmetric;
for if @ is either the brother or sister of b, then & is either the brother
or sister of a. On the other hand, being the brother of is ros
symmetric; for Prince Charles is the brother of Princess Anne, but
Princess Anne is not the brother of Prince Charles. In general, to
show that a relation R is not symmetric, objects m and » need to be
cited such that both Rmn and — Rnm. For the negation of (1) is
equivalent to (interderivable with)

2y (Ax)(dy)(Rxy & — Ryx).

The relation of being placed next to is symmetric, though the
relation of being placed to the right of is not. In view of Theorem
139, the identity relation = is symmetric; (1) in fact becomes 139,
if “ R’ is taken as ‘ = .

Second, a relation R is asymmetric if, for any x and p, if R holds
between x and y then R does not hold between y and x; in symbols,

R is asymmetric if and only if

(3) ()N Rxy > — Ryx).

The relation of being a parent of is asymmetric, since, if ¢ is a
parent of b, b is not a parent of a. The numerical relation of being
less than is asymmetric, since if @ is less than b then b is not less
than a. Using ¢ <’ to express this relation, we have as a truth of
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sathematics that Colyi(x < y=» — v < x}, which satisfies (3} for
YR as e

Loving is not, it seems, an asymmetric relation. For Antony loved
Cleopatra, but then also Cleopatra loved Antony. In general, 10
show that K 1s not asymmetric, objects m and » need toc be cited
such that both Rmn and Rnm. For the negation of (3) becomes

(4y (dx) Gy Rxy & Ryx).

The mathematical relation of being less than or equal to (n
symbols * <I ') is not asvmmetric. For 2 < 2 and 2 <I 2: hence

(dx)(dy)(x < y & y << x)—this follows by two steps of EL (3) and
(4) do not require that x and y be distinct objects. We may sav
that a relation R is antisymmerric if, for any distinci x and y, if R
holds between x and y, then R does not hold between y and x: in

symbols, R is antisymmetric if and only if
(5) ))x # ¥ & Rxy - — Ryx).!

Then <, though not asymmetric, 1s antisymmetric, since if 2 and b

are distinct numbers such that ¢ < b it does follow that — b < 4.
An eguivalent formulation of the definition of antisymmetry is

(6) (W) Rxy & Ryx - x =y)

—a relation R is antisymmetric if and only if for any x and y such
that R holds both between x and y and between y and x, x is identical
with y.

In studying the interconnections between the properties of
relations so far defined, the first point to notice is that a relation
will not usually be both symmetric and asymmetric. But it will be
in the extreme case that the relation fails to hold between anything.
For it is easy to prove

156 — (3x)(dy) Rxy b ()} y) Rxy - Ryx}
187 — (Ex){(dy) Rxy F OO){yX Rxy =+ —Ryx)

(these are ‘ relational analogues * of 133). For example, the relation
of being a female brother of holds between no objects, and so is
both symmetric and asymmetric (and for that matter antisymmetric).
On the other hand, if a relation holds ar all, it cannot be both
symmetric and asymmetric; we may readily prove

3

'We use ‘ x # y’ as a convenient shorthand for © — (x = y} ",
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158 (Fx)(Hy)Rxy b — ()W Rxy = Ryx) & (x)(y Rxy -+ — Ryx)).

The need for the existential assumption in 158 corresponds closely
to the similar need in the case of certain principles of the theory of
the syllogism, as we saw in the last section.

Though 2 relation which holds at all cannot be both symmetric
and asymmetric, it may be neither. For example loving, which we
have seen to be not asymmetric, is also not symmetric. Any example
of unreturned affection will satisfy (2). We may say that a relation
R s non-symmerric if it is neither symmetric nor asymmetric; a
symbolic definition is obtained simply by forming the conjunction
of (2) and (4). We can then prove absolutely that any relation is
either symmetric or asymmetric orf non-symmetric; and we can
prove that, if a relation holds at all, then it is not more than one of
these three. (If a relation fails to hold, then, though it is symmetric
and asymmetric, it is not non-symmetric.)

Any asymmetric relation is antisymmetric. It is easy to prove

159 (x)(y)(Rxy ==~ — Ryx) F (x)(¥)(x # y & Rxy - — Ryx)

—given the condition for asymmetry of R, the condition for R's
antisymmetry follows. The converse, of course, does not hold: for
< is antisymmetric but not asymmetric. < is not symmetric
(3 < 4, but it is not the case that 4 < 3), so that it serves as an
example of an antisymmetric relation which is non-symmetric. An
antisymmetric relation may also be symmetric. Oddly enough, = is
an example, for we can easily prove that (x)(V)x#y & x=y >y #x).

A quite distinct property which many relations possess is that of
transitivity. A relation R is transitive if, for any x, y, and z, if R
holds between x and y and between y and z, then it holds between
x and z. Thus R is transitive if and only if

(7 (yKz)Rxy & Ryz - Rxz).

" Being of the same age as is transitive, as well as symmetric: for if g
is of the same age as b, and b of the same age as ¢, then a is of the
same age as ¢. ldentity is transitive in view of 140. The relation <
is clearly transitive, though asymmetric. < is also transitive, though
non-symmetric. Hence transitivity cuts right across the previous
distinctions. Being not identical with (different from) is not, how-
ever, transitive, though often supposed to be. For example, 10 # 11,
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[¥9)

G =74 3. (7) does not stipulate that x, y,

e

and 11 # 7+ 3 but i
and z be distinct objects.
R is imtransitive if and oniv if

(&) (XU y¥zURxy & Ryzr - — Rxz).

Being a parent of is intransitive {and asvmmetric): for if ¢ is a
parent of b, and b a parent of ¢, ¢ is not a parent (but a grandparent)
of ¢. The numerical relation of differing by | from is intransitive;
for if o differs by 1 from & and b differs by | from ¢, either ¢ = ¢ or
a differs by 2 from ¢, and in either case o does not differ by 1 from
c. This relation 1s also symmetric. There are also intransitive non-
symmetric relations; trv to think of one.
A relation R is nos transitive if and oniy if

(9) (LW HEWHoW(Rxy & Ryzy & — Rxz).

(9} can be obtamed by suitably transforming the negation of (7).
In a similar way, R is not mtransitive if and only if

10y (Ex)EyWH2(Fxy & Ryzy & Rxz).

In parallel to the definition of non-symmetry we may define K to
be non-transitive in case R is neither transitive nor intransitive; a
symbolic formulation results from comjoining (9) and (10). As in
the case of the earlier relations, it is easy to show that, if a relation
R fails to hold at all, then R is both transitive and infransitive.
Further, all relations are either transitive, intransitive. or non-
transitive.

Three more properties of relations are important, but they are
not independent of the earlier properties, as we shall see. A relation
R is reflexive if, for any x, R holds between x and itself, x; thus R
1s reflexive if and only if

(11} (x)Rxx.

In view of 138, = is reflexive; so are the relations of being the same
age as, being the same height as, having the same-coloured eyes as,
and having the same parents as. For everyone is his own age and
height, etc. R is irreflexive, on the other hand, if for any x, it is not
the case that R holds between x and x; thus R is irreflexive if and
only if

{(12) (x)— Rxx.
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Being different from 1s an irreflexive reiation. A relation R may be
neither reflexive nor irreflexive, and will be just in case

(13) (dx)Rxx & (dx)— Rxx.

We then say that R is non-reflexive. Presumably loving is non-
refiexive; there are those who love themselves (hence it is not
irrefiexive), and there are those who do not (hence 1t 1s not reflexive).

Every relation 15 esther reflexive, irrefiexive, or nonp-refiexive, and
not more than one of these three. This is true whether the relation
holds at all or not at all; for if the relation holds not ar all, 1t is
irrefiexive, but neither reflexive nor non-reflexive. We can easily
prove

160 —(dx)y(Hy)Rxy r (x)— Rxx
161 —(dx)(HyjRxy b —(x)Rxx
162 —(Fx)dy)Rxy b —((Ax)Rxx & (Hx)— Rxx).

This difference between the present group of properties and the
earlier groups clustering round symmetry and transitivity arises
essentially because the three latest definitions are not conditional in
form, and so cannot turn out trivially true because their antecedents
are always false, as happened in the earlier cases. In fact, 16}
reflects our assumption that no universe is empty; if a relation is
reflexive, i.e. 1f (xJRxx, by 104 it follows that (3x)Rxx, so that R
holds at least in some case.

Of the various interconnections that exist between the 10 defined
properties of relations, three of the most important are proved in
the following three sequents. First, all asymmetric relations are
irreflexive, as we see from the sequent

163 (x)(y)(Rxy -+ —Ryx) F (x)— Rxx
L (1) )N Rxy > —Ryx) A

1 (2) (y)(Ray-> — Rya) 1 VE
1 (3) Raa -+ — Rau 2 UE
1 (4) —Raa 3 SI(S) 23
1 (5) (x)—Rxx 4 Ul

We assume the asymmetry condition at line (1), and derive the
irreflexivity condition at line (5). The trick in the proof lies in the
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double application of UE using the same arbitrary name “ ¢ both
times. The reader should satisfv himself that he understands the
soundness of the step from (2) to (3). The step from (3) to (4} is at
the level of propositional calculus.

Secondly, all irreflexive and transitive relations are asymmerric.
in 164, we obtain the condition for asymmetry as a conclusion from
the conditions for irreflexivity and transitivity.

164 (x)— Ruxx, (0NN Rxy & Ryz = Rxzy b (K Rxy - — Ryx)

I (1) {(x)— Rxx A

2 (D) (N2 Rxy & Ryz-» Exz)y A

2 Y (v Ray & Ryz -+ Raz) 2 UL

2 (4) (z¥ Rab & Rbz -» Raz) 3 UE

2 (5) Rab & Rbu - Raa 4 UE

i (6) — Raa I UE

1,2 (7) —(Rab & Rba} 56 MTT
1.2 {8y —Rabv — Rba 7 SK8) 1.5 1(g)
1.2 (9) Rab -» — Rba 8 SI(S) 48
1.2 (10) (W) (Ray - — Rya) 9 Ul

1,2 (1 (X Rxy - — Ryx) 10 Ut

The trick here is the step of UE from (4) to (5), in which “z° is
eliminated in favour of the already present *a’. This yields a
consequent Raa, whose negation we can obtain {rom (1) (line (6)),
and so paves the way for the propositional calculus reasoning
leading to (9). Since (1} and (2) lack both ‘¢’ and “&°, the steps
of Ul at lines (10} and (11} are justified.

Thirdly, all intransitive relations are irreflexive. The proof of the
sequent containing this information is basically like that of 163.

165 (x)(y)(zXRxy & Ryz » — Rxz} F (x)— Rxx
1 (1) (xXX¥Hz¥Rxy & Ryz - —Rxz) A

1 (2) ()2 Ray & Ryz -» — Raz) 1 UE
1 (3) () Raa & Raz - — Raz) 2 UE
1 (4) Raa & Raa - — Raa 3 UE
5 (5) Raa A
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5 (6} Raa & Rpa 5.5 &l
.5 (7y —Raa 4.6 MPP
15 {8) Raa & — Rac 5.7 &I

1 {9y — Raa 5.8 RAA
1 (10} (x) — Kxx G Ul

From these three principles various conclusions may be drawn
about what combinations of properties relations cannot have. One
example will suffice. If a relation holds at all. then it cannot be
irreflexive and transitive and symmetric. For if it is irrefiexive and
transitive, by 164 it is asymmetric. And if it holds at all. 2s we saw
earlier, it 1s not both symmetric and asymmetric. It is important to
notice that this conclusion essentially depends on the assumpiion
that the relation hoids: for if — (3x)(dy)Rxy, then R is both
irreflexive and transitive and symmetric.

The study of relations can be pursued a great deal further than
we are able to take it in this book. But it is best carried out within
the framework of a brozder logical discipline than the predicate
caiculus. The discipline at present favoured for this undertaking is
the theory of classes, the study of classes of objects and the relation
of membership between an object in & class and the class itself. In
terms of classes, the notion of a relation can itself be defined—
relations turn out in fact to be a special kind of class. Class theory
1s indeed so powerful a logical system that all mathemarical concepis
can be defined in it: natural numbers. rational numbers, real
numbers can be handled as special kinds of classes. This possibility
has led certain philosophers to advance the thesis that all mathe-
matics can be reduced to logic—a thesis which again it is outside
the scope of this book to discuss. However, a study of class theory
may be regarded as the next step which the reader who wishes to go
further shouid take; an excellent introduction is Suppes {25], and
Appendix B of this book outlines ihe early stages of this theory.

Although we have not developed a notation for expressing them
exactly, there are certain notions sc commonly employed in
connection with relations that it is worth, for reference purposes,
giving here an informal account of them. A formal account is
forthcoming within class theory. By the domain of a relation R we
understand the class of objects which bear the relation R to some-
thing. Thus the domain of the relation of loving is the class of all

186



FProperties of Relarions

fovers, the domain of the relation being o parent of 1s the class of ali
fathers and mothers. On the other hand, by the converse domain
{sometimes called the range) of a relation R we understand the class
of objects such that something bears the relation K to them. Thus
the converse domain of the relation of loving is the class of all
loved things, the converse domain of the relation of being a parent of
is the class of ali things with parents, which, if we are to believe the
Bible, does not mclude evervone. The field of a relation K is the
class of things either in the domain or in the converse domain of R£:
the class of things, in fact, which cither bear relation R to something
or have relation R borne to them by something, Thus the field of
the loving relation is the class of things loving or loved-—a class
which, presumably, does not have Scrooge as a member. A relation
which holds of nothing has an empry field—a field which has no
members.
A shightly more formal presentation of these ideas would be the

foliowing. ¢ belengs to the domain of Rif and only if

(14) (dx)Rax;
a belongs io the converse domain of R if and only if

(15) (Adx)Rxa:
a belongs to the field of R if and only if

(16} (3x)Raex v (dx)Rxa.

We shall not pursue the formal development of logic beyond this

point. The bibliography, however, containg suggestions for further
reading.

EXERCISES
1 (a) Prove the interderivability of (5) and (6) in the text.
(b) Prove the validity of sequents 156-162 in the text.

2 Let us call a relation R serial if Oo)(Fy)Rxy, e if evervthing bears the
relation R to something. Thus being less than (¢ <7} is serial in the
universe of natural numbers, since for any number there 18 2 number
than which it is less (there is no greatest natural number).

(a) Prove that = is serial: i.e. prove F (x)(dy)x = ).

(b) Prove that if a relation R is serial then it is not empty: i.e. prove
F ) (EyvyRxy > (Ax¥Fy)Rxy.

(¢) Prove that all serial, transitive, and symmetric relations are refiexive.
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5
-

Given that a relation is transitive, show that it ts trreflexive if and only
if it is asvmimetric.

The relation of being a brother or sister of seems Intuitively both
transitive and irrefiexive, whence by 164 it would follow that it was
asvminetric, which it clearly 1s not. How do you explain this paradox ?

Given that R is both symmeitric and antisvmmetric, prove that no two

distinct  things stand in the relatton K io ecach other (ie

(xXHv¥x # y-» — Rxy)}y and further that £ 15 transitive. Hence show

that if R is reflexive, symmetric, and antisymmetric, then

(XN V) Rxy =3 x == y). (This effectively shows that identity is the

only reflexive, svmmetric, and antisymmetric relation.}

Show that no relation can be:

() intransitive and reflexive:

(b} asymmetrical and non-refiexive

(c) transitive, refiexive, and asymmetric:

(d} transitive, non-symmetric, and irreflexive.

(a) From 156-158 it can readily be seen to follow that relation R is
both symmetric and asymmetric if and oniy if —(FxTRxy.
Prove correspondingly that a relation R is both transitive and
mtransitive if and only if —(ExWI(Fz) Rxy & Ryz).

(6) Hence prove that if R is both transitive and intransitive, then R is
asymumetric.,
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APPENDIX A
Normal Forms

it is customary to include in elementary logic courses a treatment of
normal forms. Normal forms have a certain interest in connection
with the truth-table method, since they provide an independent test
as to whether 2 wif is tautologous, contingent. or inconsistent; and
they are also used in certain proofs of the compleieness of the
propositional caiculus (see, e.g.. Basson and O'Connor [1]}. The
completeness proof given in this book (Chapter 2, Section 5J,
however, did not rely on normal forms, so that I have relegated an
account of them to an appendix. What follows presupposes the
terminology of Chapter 2, Section 3.

We begin by defining normal forms. First, by an afom I under-
stand either a propositional variable or a negated propositional
variable. Thus

‘Pt =P Q,—=RVST
are all atoms, though
0"
is not one. Let Ay, ..., A, be a list of n atoms, where n 1s greater

than or equal to 1. Then by an elementary disjunction (¢.d.) 1 under-
stand a formula of the form

(AL vAv.. . VAL
Thus any list of atoms linked by ‘v’s counts as an elementary
disjunction: for example,
“(Pv Q)
‘(—PvQOv—R)’
A—~OVvPvQgv—5)
‘(PvPv-—Q)

are all elementary disjunctions. In the limiting case where n = 1, a
single atom standing alone counts as an elementary disjunction also.
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The same variable may appear both negated and non-negated in an
e.d., as in the third example, and the same atom may appear more
than once, as in the fourth.

Correspondingly. by an elementary conjunciion {e.c.y 1 understand
a formula of the form
(A & A &, . &A,)

for atoms A, ... A, where nis greater than or equal to 1. Any
e.d. becomes an e.c. if all the * v s in it are changed to © & ‘s, and
vice versa, Again, in the limiting case, an atom standing alone
counts as an e.c.
By a conjunciive normal form (C.MN.F) 1 understand a formula of
the form
A& A& ... &A,,

where A, . . ., A, are elementary disjunctions, {or n greater than or
equal to 1. Thus a C.N.F. is a string of e.d.’s linked by * & . For
example,

(PvO)&(Pv—QVRY&(-RvVvSY

APV —-Pv Q)& -5

APV &PV —0)

are all C.NUF.'s, the second of which has as its second e.d. 2 single
atom and the third of which has as its two conjuncts the same e.d.
In the Iimiting case where # = 1, a single e.d. standing alone counts
as a C.N.F., so that “(Pv Q) or even ‘P’ alone counts as a
C.N.F.

Correspondingly, by a disjunctive normal form (D.N.F.j I under-
stand a formula of the form

AVA V.. VA,

where A, ..., A, are clementary conjunctions, for n greater than or
equal to 1. Thus a D.N.F. is a string of e.c.’s linked by ‘ v’. Any
C.N.F. becomes a D.N.F. if all *v’s are changed to “ & ’s and all
‘&’s to ‘v’s, and vice versa. In the limiting case where n = I, a
single c.c. standing alone counts as a D.N.F.

A consequence of these definitions is that all e.c.’s and e.d.’s are
both C.N.F.’s and D.N.F.’s. For example, consider

‘P& —Q &R,
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an e.c. This is o CNF. whose three e.d.’s are each of them the
limiting case of a single atom. 1t is also 2 D.N.F. in the limiting
case where the number of e.c.’s is 1. As an extreme limiting case.
a simngle atom is both a CN.F. and a D.N.F,

I now describe a procedure for reducing anv wif of the propo-
sitional calculus to & CNUF. and to a D.NJF. This will consist in
finding, for any wif, a CN.F. and a ID.N.F. equivalens to it in an
appropriate sense. The sieps of the procedure will all be of the
same kind, namcly the replacement of a part or the whole of a2
given formula by an equivalent formula. To this end, we note the
following biconditionals, which we shall need in our work:

(1} P& P ot PP
(2) PVPwes P
BYPEQes Q&P
(4 Pv Q= OV P
5) PE(Q AR~ (P& OY& R
(6) Pv{(QVvR)y<~—>(Pv)vR
(7} —— P i P
(8) Po Qe — PV
9} (Pe>Q) <3 (P>} & (0 - P)
(10) (P& Q)< —Pv (0
(1) —(Pv Q)= —P & —(
(12) PV(Q& Ry (Fv ) &(PVER)
(I3) PE(QVR)<=> (P& Q)v(P&R).
All of (1)-(13) are provable as theorems of the propositional calculus,
and are also tautologies by a truth-table test. (Most should be
familiar from exercises and results in the text.) {1} and (2) are some-
times called the laws of idempotence for * & " and “v’. (3) and (4}
are called the commutative laws for * & " and ‘v’. (5) and (6) are
called the associative laws for * & > and “ v’. (7) is the law of double
negation. (10} and (11) are forms of de Morgan's laws, and (12) and
{13) are the distributive laws.
It 1s in virtue of the associative laws (5) and (6) that, for the pur-

poses of truth-table computation, we permit ourselves to write ‘ com-
plex conjunctions’ or ‘complex disjunctions’, suchas‘'P& 0 & — R’
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or ' —Fv v R’ without inner brackets. Strictly, such expressions
are not wis (see the definition in Chapter 2, Section 1}, and accord-
mmgly C.N.F.'s and D.NLF s will not in general be well-formed. But.
as far as a truth-table evaluation 1s concerned, it makes no difference
how brackets are inserted. We may compare the situation in
arithmetic with respect to ‘- °, which is also associative:
(x +y)+ z=x-+(y+ z), so that we may write ‘5 4+ 3 -+ 2°
safely without brackets. By contrast, * — ° is nol associative:
53— 2)=4, whilst (5 ~ 3} — 2=20, so that 5 — 3 — 2" ig
dangerously ambiguous. Similarly, in logic ‘-~ is not associative :
‘P (@ R) <> (P> Q) R’ is not a tautology, as the reader
should confirm. (Is * = associative or not?)

Similarly, in virtue of the commutative laws (3) and (4), the order
in which the conjuncts or disjuncts of a complex conjunction or
disjunction appear will not affect the truth-tabie evaluation. Again,
“& 7 and ‘v’ resemble -+ in arithmetic, for which we have
x + y =y -+ x; by contrast, * — 7 is not commutative (5 — 3 = 2,
whilst 3 — 5 = — 2), noris ‘> in logic, since P -+ Q <> O - P
1s not a tautology. (Is ‘> commutative ?)

Further, in virtue of the idempotence laws (1) and (2), we may
safely drop reduplicated conjuncts or disjuncts in a complex con-
junction or disjunction without affecting the truth-table evaiuation.
In this respect, * & " and ‘v’ differ from ‘ 4 ’, since we clearly do
not have as an arithmetical truth x -+ x = x. ‘- ’isnot idempotent
either. (Is ‘> "7)

In reduction to normal forms, we are seeking, for a given wfl, a
normal form which will be equivalent to the wff under a truth-table
test: 1.e. for any given assignment of truth-values to the variables
of the wff, the normal form shall have the same truth-value as the
original wff, so that the biconditional of the wff and its normal
form will be a tautology (compare the definition of equivalence in
Chapter 3, Section 3). Hence, in virtue of (1)~(6), in the search for
a normal form we allow ourselves to take brackets out of, rearrange
the order of items in, and delete reduplicated items from, complex
conjunctions and disjunctions, whenever such moves suit our
purpose. Further, in virtue of (7), we shall allow ourselves freely
to drop ¢ —— ’ whenever we wish, since such a move cannot affect
the truth-table evaluation either.

In fact, all our moves in the transformation of a wff into a normal
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form are of the same kind: we replace a part (sometimes the whole}
of a given formula by some formula equivalent (o it under 2 truth-
table test. And the only equivaiences we use are (1)—(13) or sub-
stitution-instances of them. It should be clear that no move of this
kind will affect the truth-value evaluation, so that the normal form
which emerges at the end of the process will be equivalent to the
given wil, as is desired. But for the record we state, though do not
prove, the principle of replacement which guides our work:

(R} If Ais equivalent tc B, and D results from C by replacing
some occurrence of A in C by B, then C 15 eguivalent o
D, for any formulae A, B, C, D.

It 15 in fact this principle, together with (1)-(7), that justifies the
moves we have already agreed to make (dropping of * — — ", re-
arrangement of the order of conjuncts in a conjunction, etc.).

The reductions of a wif to a C.N.F. and 2 D.N.F. may conveniently
be divided into two stages, the first of which 1s common to both
reductions.

Siage 1. The objective here is to obtain a formula with the
following three properties: (i) © —— " nowhere appears; (ii} the only
connectjves that appear are * — °, * &, or ‘v ’; (ili) ¢ — ° appears
only before propositional variables, nowhere before a bracket (in
fact, of course, (iii} implies (i)).

As to (i), this requirement is simply satisfied by dropping ¢ — — °
m virtue of (7). Our first step, therefore, will be to eliminate any
occurrences of “ > " or * =< in the given wif. This can be effected
in virtue of (8) and (9), which permit us to replace any conditional
by a disjunction the first disjunct of which is the negation of its
antecedent and the second disjunct of which is its consequent, and
any biconditional by a certain conjunction of two conditionals, each
of which in turn can be eliminated in the manner just described.

When this step is complete, we shall have a formula satisfying
condition (ii). However, it may be the case that * — * appears in
this formula outside a bracket, so that (iii) is not satisfied. Still, the
main connective inside the bracket can now only be either “ & * or
‘v’ so that the formula has as a part either something of the form

—(...&...)
or something of the form

—{...v..
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If the first case arises, we can apply (10} and replace the part bv &
disjunction whose disjuncts are the negations of the original con-
juncts in the bracket: if the second case arises, we can similarly
apply (11) and replace the negated disjunction by a conjunciion
with negated conjuncts. As a result of these moves, it may still be
the case that * — * appears before a bracket. But it should be clear
that by repearing moves of this kind, we shall eventualiy work the
* — "santo the formula in such a way that they appear. if at all. only
before variabies, so that sconer or later condition (111} will also be
met, and Stage I will be complete.

The procedures for C.N.F. and for D.N.F. diverge after this
point. Accordingly, we describe each separately.

Stage II (a) (continuation for CN.F.). If, at the end of Stage I,
we have not already obtained a C,N.F_, this can be for one reason
only, as the definition of C.N.F. makes plain: at one or more places
there must be an occurrence of * & * which is subordinate to some
occurrence of “ v'. For if this were not so, given conditions (i)-(iii)
of Stage I, we should in fact have a C.N.F. Hence (though this mav
involve a rearrangement of disjuncts) some part of the given formula
is of the form

v &L

By using (12), this can be replaced by a formula of the form
(oovo )& vy,

in which the ‘v’ has moved into subordinate position and the * & ’
into subordinating position. Of course, it may be that this new
© &’ is still subordinate to some other occurrence of ‘v ’: but in
that case we can reapply the same procedure. Eventually, using
only the equivalence (12) or its substitution-instances, we can bring
all the * & ’s into subordinating positions and relegate all “v’s into
subordinate positions. The result will be a C.N.F. (How can we be
sure that all the conjuncts of the C.N.F. will be elementary dis-
junctions ?)

Stage II (b) (continuation for D.N.F.). By entirely similar con-
siderations, we can see that, if the result of Stage I is not already a
D.N.F., there must be in it at least one occurrence of ¢ v’ subordinate
to an ‘ & . Hence some part of it, perhaps after rearrangement of
conjuncts, is of the form

&LV )
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By using (13}, this can be replaced by a formula of the form
(oo & vl &,
and, by repeating steps of this kind, we can bring all ‘v ’s into
subordinating positions and all * & 's mto subordinate positions.
The result will be & D.NF.
Let us illustrate these procedures for a wif of medium compiexity

(1) § — (P> Oy R}.
Embarking on Stage 1. we apply (8) to transform the three con
ditionals mnto disjunctions. This yields

(i} —Sv —(—(—FPv )V R
This satisfies the second condition of Stage I, but there are still two
‘ —’s outside brackets. We apply (11} to the second disjunct of
(i1} to obtain

(i) —Sv{——(—Pv () & —R).
or, dropping a double negation,

(ivy —~Sv({(—Pv Q)& —R).
Stage 1 is now clearly complete, but the result is neither a C.N.F,
nor a D.N.F. We set out, therefore, on Stage II (). Observe that,
in (iv), the sole occurrence of * &’ is subordinate to the main
connective *v’. We may, therefore, apply (12) to (iv) as a whole,
and obtain

V) (—Sv(—=FPv Q) &(—S5Sv—R).
Within the first conjunct of (v) the brackets are needless by (6), and
we have asa C.N.F,

(vi)y (—Sv—~Pv )y &(—Sv—R).
We now revert to (iv), and start Stage II (b). The first disjunct
¢ —S 7 of (iv) will do, of course, as an e.c. for our desired D.N.F.,
and we need only concentrate on the ‘v’ which is subordinate
¢ & . Rearranging the conjuncts, we obtain

(vii) —Sv(—R&(—PVv Q)),
whence, applying (13) to the second disjunct,

(vii) —Sv({(—~R & —P)v(—R & Q)).

This 1s in effect a D.N.F., and we may drop a pair of brackets to
obtain

(ix) —Sv(—R & —P)v(—R & Q).
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In actual practice, Stage II is vsually the more formidabie, though
the principles involved are very simple. This is because an applica-
tion of the distributive laws doubles the number of brackets, and
the resulting formula may be almost twice the length of the original.
Students who do normal form work must not be daunted by this,
and also need to pay very close attention to the bracketing of their
formulae. It should also be remembered that, in Stage I, there is
often a choice as to where one begins on subordinate occurrences
of "vi’sor “ &’s. As a result, different C.N.F’s and D.N.F.s for
the same original wif may be obtained-—there is no unigue C.N.F.
or D.NUF. for a given formula.

in order to put C.N.F.’s and D.N.F.’s to some use, we first state
some obvious equivalences. Let T be any tautology, and I any
inconsistency; then the foliowing are tautologous:

(14) Ty P s T
(15) T& P < P
(16) Iv Pty P
(17) 1 & P s—s1.

By (14), a disjunction with a tautologous disjunct is itself a tautology,
and by (17) a conjunction with an inconsistent conjunct is itself an
inconsistency. By (15), a conjunction with a tautologous conjunct
is equivalent to the other conjunct (and so the former may be
deleted as far as a truth-table evaluation goes), and by (16) a dis-
junction with an inconsistent disjunct is equivalent to the other
disjunct (and so the former may be deleted as far as a truth-table
evaluation goes).

It follows from (15) that (¢) a complex conjunction is tautologous
if and only if each of its conjuncts is tautologous, and from (16)
that (8} a complex disjunction is inconsistent if and only if each of
its disjuncts is inconsistent. From () we may infer that an elementary
conjunction can never be tautologous, for no atom can be tautol-
ogous; similarly, no elementary disjunction can be inconsistent.
However, we can establish

(y) An e.d. is tautologous if and only if it has among con-
stituent atoms a propositional variable and the negation of the
same variable.
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For suppose an e.d. does contain a variable, say *P’°, and also
¢ — P’ the negation of that variable. Then, by rearranging the
atoms if necessary, we can bring it info the form

Pv—Pv...

whence, by (14), it is tautologous. Conversely, if 1t lacks ag atoms
any variable together with the negation of the same variable, we
can find an assignment of truth-values that makes each atom false
{namely, for variables that appear negated, the value T, and for
variables that appear non-negated, the value F), and so the whole
e.d. faise. Similarly, using (17), we can show

(&) An e.c. is inconsistent if and only if it has among s con-
stituent atoms a propositional variable and the negation of the same
variable.

From (e} and (y) we infer that & C.N.F. is tautologous if and only
if all its e.d.’s are tautologous, i.e. if and only if every e.d. in if has
amongst iis constituent aioms a propositional variable and the negation
of the same variable. That is to say, we can ‘read off " from a
CNF. of a wil whether it is tautologous or not. For example,
from (vi) above we can infer that (i) is not tautologous, since (vi}
has at least one e.d. lacking a variable and the negation of the same
variable {in fact both e.d.’s are like that in this case).

Similarly, from (8) and (&) we infer that a D.N.F. is inconsistent
if and only if all its e.c.’s are inconsistent, i.e. if and only if every e.c.
in it has amongst its constituent atoms a propositional variabie and
the negation of the same variable. For example, from (ix) above we
infer that (i) is not inconsistent, since (ix) has at least one e.c.
lacking a variable and the negation of the same variable. In fact,
we can now conclude that (i), being neither tautologous nor incon-
sistent, is contingent. Considering the second conjunct of (vi}, we
see that the assignment S = T, R = T makes (i) false; and con-
sidering the first disjunct of (ix), we see that the assignment S = F
makes (i} true. In general, for any wiff, we can tell very simply
from any C.N.F. equivalent to it whether it is tautologous or not
and from any D.N.F. equivalent to it whether it is inconsistent or
not, so that reduction to C.N.F, and D.N.F. provides a test as to
whether a wif is tautologous, contingent, or inconsistent which is
independent of the truth-table test. Reduction to normal form may
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save us the labour of a truth-table test—at the cost of labour of a
different kind.

A certain interest attaches to normal forms of a special kind, -
which are sometimes called canonical. A canonical conjunciive
normal form (C.CINLF.y is a C.MNF. in which every propositional
variable that occurs (negaied or unnegated) in some e.d. occurs
(negated or unnegated) in all e.d.’s in the C.N.F. Correspondingly,
z canonical disjurictive normal form (C.ID N F.yis 2 D NF. in which
every propositional variable that occurs (negated or unnegated) in
some e.c. occurs (negated or unnegated) in all e.c’s in the D.NLF.
For example {vi) above is not canonical, since * X appears in the
second e.d. but not in the first, and {(ix) 15 not canomical, since * §°
appears in neither the second nor the third e.c. On the other hand

“(Pv—0Qv—Ry&(OV—PvR)

is a C.C.N.F.,, and the interchange of * &’ and ‘v’ in it yields a
C.D.NF.

In order to obtain canonical normal forms from non-canonical
ones, we note first the two equivalences

(18) P<—> (P v Q) & (P v — Q)
(19) P <> (P & Q) Vv (P & —O).

If, now, a given C.IN.F. is not a C.C.N.F., there must be some
variable occurring in some e.d. in the given form which does not
occur in all e.d.’s in the form. We may use (18) to replace any e.d.
lacking a given variable by a pair of e.d.’s each containing that
variable as well as the other atoms of the given e.d.; in one member
of the pair it appears unnegated, and negated in the other. For
example, wishing to transform (vi) into a C.CN.F., we should
replace the first conjunct by

“(=Sv—PVOVR) & (—~Sv—PvQv—R)",

to which it is equivalent by (18), thus obtaining two e.d.’s in which
all four variables of (vi) appear. (There would then remain the
task of transforming the second conjunct of (vi) into e.d.’s con-
taining all four variables.) Thus repeated use of (18) will transform
a CN.F. that is not canonical into an equivalent C.C.N.F. In an
entirely similar way, we can, using (19), transform any D.N.F. that
is not canonical into a C.D.N.F.
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Given a canonical normal form, we may simplify it by (i) deleting
any repetitions of atoms occurring in any e.d. or e.c. in the form,
(ii) deleting any repetitions of e.d.’s or e.c.’s in the form, (i} in the
case of a C.N.F., deleting any tautologous e.d.’s in virtue of (15},
and, in the case of a D.N.F., deleting any inconsistent e.c.’s in
virtue of (16). In virtue of (iii), the norma! form may vanish
altogether, and will do if the C.N.F. is tautologous or the I).N.F.
mconsistent. In that case, we agree to write* Pv — P and ‘P & — p°
respectively. Let us call the result of these manoeuvres 2 distinguished
{(conjunctive or disjunctive} normal form. Then it can be shown
that, for each wff, its distinguished {conjunctive or disjunictive)
normal form is unigue, apart from variations in the order of atoms
m e.d.’s or e.c.’s and in the order of the e.d.’s or e.c.’s themselves.
Moreover, these forms bear a close relation to the truth-table for
the given wi, in that the truth-table can be read off from either of
them and they can be read off from it.

This is perhaps best shown by an example. Let us suppose a wf
A contains the three variables ‘P, ‘¢, R’ and that when
subjected to a truth-table it yields the following column under its
main connective:

-
i

T T T
R R RS R R P

T T T e ] ]
T e T T

Selecting the assignments for which A comes out true, we may write
down corresponding e.c.’s in which a variable appears unnegated if
it takes the value T in the assignment and negated if it takes the
value F. Thus, corresponding to lines 1, 4, and 6 of the above
table, we have

‘(P&Q&R)

‘(P& —Q & —R)’

(—P& Q&R
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Forming the disjunction of these three, we obtain a distinguished
Y N.F. which, it 1s fairlv evident, is equivalent to the given wff A,
Conversely, given a distinguished D.N.F. for a certain wif, each e.c.
in it determines an assignment of values to its variables for which
the wif is true, and the truth-table for it can be written down. Thus
the distinguished DN.F. of a2 wif embodies in symbolic form the
outcome of a truth-table test on that wit.

Similar remarks can be made about the distnguished C.NF.
Pursuing the above example, corresponding 1o each assignment for
which A comes out false, we may write down e.d.’s m which z
variable appears negated if it takes the value T in the assignment
and unnegared if it takes the value F. Thus, corresponding to lines
2,3, 5 7, and 8 of the test, we obtam

f—Pv—QvVvR’
C—Pv Qv —R’
‘Pv—Qv—R’
‘PvQOv—R’
*PVvOvR.

Forming the conjunction of these, we obtain a distinguished C.N.F.
which is equivalent to the given wif (the reader should test this for
himself). Conversely, given a distinguished C.N.F. for a certain wff,
each e.d. in it determines an assignment of values to its variables
for which the wif 1s false and the truth-table for it can be written
down. The distinguished C.N.F., like the distinguished D.N.F., is
the symbolic embodiment of a truth-table test.

It is only fair to point out to students that, if they are simply called
upon to obtain a normal form equivalent to a given wif. the quickest
way is usually to perform a truth-table test and read off a normal
form from that; the only merit possessed by the burdensome pro-
cedures for obtaining normal forms described in this appendix is that
they are independent of such a test.
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APPENDIX B

The Elementary Theory of Classes

This appendix is intended to give readers a foretaste of what they
are hkely to find if they pursue logic bevond the confines of this
book. Not that anything in it is particularly difficult: indeed, in its
first stages the theory of classes is no harder than, and bears 2 close
resemblance to, the propositional calculus, as we shall see. But in
its upper stages it raises problems of great interest concerning the
foundations of mathematics which, at the date of writing, remain
unsolved.

It is not possible to give a precise definition of what 2 class is.
Intuitively, a class 1s a collection of entities of any kind, and we
come to know classes typically in one of two ways: either we are
given a /ist of their members, or we are given a condirion for member-
ship of the class. Let us consider these two ways in turn.

Given a list of things, say Tom, Dick, and Harry, we mav consider
the class which has just those things as members. Let us agree to
name this class by enclosing the names in the list in curly brackets.
Thus

* {Tom, Dick, Harry |~

shall be our name for the class whose members are just Tom, Dick,
and Harry. Simularly {0,1,2,3,4,5,6,7.8,9} shall be the class whose
members are the first ten natural numbers. It is normal to abbreviate
‘1s a member of * to the Greek letter “e¢’. Then true propositions
will be

Dick € { Tom, Dick, Harry}
3£{0,1,2,34,5;
34 3e46,7,8,9.
We more commonly, however, determine classes by stating
conditions for membership of them: thus we speak of the class of

inhabitants of London, the class of even numbers, the class of
female chiropodists, etc. We use this device for describing classes
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either when it is practically inconvenient to list their members by

name (the class of inhabitants of London} or when it is theoretically

impossible to do so (the class of even numbers, which s infinite in
& 5 &

size). Using the device of variabies “x°. “y’ ‘27 as in predicate
calculus, we may adopt the notation

Uxio x0T
as & name for the class of objects x such that ... x ... . Thus

{x: x mhabits London | will be the class of inhabitants of London
and {x:x 1s an even number; will be the class of even numbers.
Then true propositions will be

Elizabeth 1 ¢ { x: x inhabits London}
256 ¢ 1 x: x1s an even number §.

More generally, any property F will determine & class, namely the
class of things with property F, or {x: Fx}. And an arbitrarily
selected object @ will be a member of this class if and only if it has
the property F. In symbols:

(Phyae [ x: Fx}~—s Fa.

(P1) 1s our first basic principle concerning the membership of ciasses.
It seems hard to doubt its truth but, though we shall accept it for
the purposes of this appendix, I shall outline reasons for rejecting
it, at least in full generality, at the end.

What constitutes the identity of a class? We want to say, for
example, that the class of even numbers is the same as the class of
numbers divisible by 2, and that the class {2,3,5,7} is the same as
the class of prime numbers less than 10. Classes are identical if they
have exactly the same members, i.e. if anything which is 2 member
of the one is 2 member of the other and vice versa. In order to state
this principle more strictly, we adopt the Greek letters ‘o, “ 87,
‘v, .. .as class-variables, whose range is understood to be restricted
to classes as numerical variables in algebra are understood to have
their range restricted to numbers. Then our second principle con-
cerning classes is the following:

(P2) (x){(xea e xef)sa=4
If an object is a member of « if and only if it is 2 member of B, i.e.

if a and B have exactly the same members, then by (P2) « and B are
identical.
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We may illustrate the use of (P1) and (P2} by proving from them
the gquite trivial resuit
200 F{x:xee} = a
200 merely affirms that the class of things which are members of g
class a just is a. The proof is easy: as a particular case of (P},
taking * Fx " as “xea’, we have
(lygae{x:xea) <3 gea.
(1) affirms that an object is a member of {x: xeaj if and only if 1t
18 a member of a, i.e. that the two classes have exactly the same
members, By (P2}, therefore, taking ‘e’ as {x:xea} and ‘f° as
o, we conclude the identity of the two classes, which is the result 200,
Tacitly we are here using a step of Ul on (1), followed by a step of
MPP in connection with a substitution-instance of (P2). Our proofs
in this appendix will in general remain at this informal level.
Certain operations on classes are of great importance: here we
introduce the three most basic. First, given two classes a and 8, we
may define the union of o and £ as the class of things which are
either members of « or members of . For example, if a is {1,2,3}
and B 1s {2,3,4), then the union of o and fis {1,2,3.4}. Or, if ¢ is
the class of Englishman and £ the class of doctors, then the union
of a and B is the class of people who are either Englishmen or doctors
(including English doctors). Using a symbol reminiscent of ‘v °, we
write the union of a and f as ‘e U B’°. A formal definition is
Df.vieuf={x:xcavxef}
An immediate consequence of the definition by (PI) (taking * Fx°’
as‘xeavxef)is
201 Facaf<>acavacep. -
Concerning the union of classes, the following results hold:
220 tauf=PFua;
203 FlauBuy =cau(fuy);
206 Faua = a.
Of these, I prove only 202; the proofs of 203 and 204 are entirely
similar. By 201,
(2) acauB<racavaseh
3) <3 qaefvaca
4) <32 & B U a.
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Line (3) follows from line (2} bv elementary propositional calculus
reasoning, and line (4) from line (3) by an application of 201 taking
‘e’ as B and ‘B’ as «. The device of *stacking’® biconditionals
should be self-explanatory. Since, by (4}, « w f and B e have
exactly the same members, they are identical by (P2).

Second, given two classes a and f, we define the infersection of o
and B as the class of things which are both members of ¢ and members
of . Forexample, if e1s{1,2,3 and Fis {2,3,4 ) then the intersection
of sand £is {2,3}. Or, if ais the class of Englishmen and f the class
of doctors, then the intersection of a and f is the class of male
English doctors. We write the intersection of « and fas "an B,
Thus:

Dfiimi anf={x:xea&xefl
As an immediate consequence by (P1), we have
W Ftageanf<s>aea&ach,
and the analogues of 202-204 can also very easily be proved:
26 Farn B = Bna;
207 Flamn B) vy =anrn{fny)
208 Fana = a

In view of 202-204 and 206-208, union and intersection of classes, in
the terminology of the previous appendix, are commutative,
associative, and idempotent.

Third, for any class o we define its compiement as the class of
things which are not members of a. Of course, in any interpretation
of the theory of classes, as in the case of the predicate calculus, we
have a fixed universe of discourse in mind, and the complement of a
class is relative to that universe. Thus, given the universe of positive
integers, the complement of the class of even numbers is the class of
odd numbers (and vice versaj, and, given the universe of human
beings, the complement of the class of males is the class of females
(and vice versa). Given the universe of natural numbers, the com-
plement of the class {0,1,2} is the class of numbers greater than 2.
We denote the complement of o by ‘a!’. Thus:

Df.l. ol = {x: —(xsa)}
An immediate consequence of this definition by (P1) is
209 Fae a! s> —(ac a).
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A law of double negation for class is forthcoming in the form
216 kol =

Umion, intersection, and complementation of classes are related
to one another by various analogues of de Morgan’s laws. Here we
state and prove only one; the reader should be able to compose and
prove the remainder for himself, if he wishes.

11 Flam BY = al U B
By 209,

Shaslen f) < —(aeanf)

(6) i —(gea & ae f)
{7} s {6 a) v ~—(ae f)
(8) s geal vaef

(95 e g & ol Bl

Here (6) follows from (5) by 205, (7) from (6) by propositional
calculus reasoning, (8) from (7) by 209 again, and (9) from (8) by 201.
211 now follows by (P2), since we have shown that (e« n B)! and
a! U B! have exactly the same members.

So far, we have used curly brackets round lists of names informally
as designations for classes; but it is possible to introduce this device
Sformally by defining it in terms of our other use of curly brackets,
where a condition for membership of a class is given. For example,
{Tom, Dick } may be defined as the class whose members are either
Tom or Dick. In general, we may put

{a,bY={x:x=avx ="~}

Then {a, b} will be the class whose members are just ¢ and b, i.e.
the class of things which either are a or are b. To be a member of
{a. b}istobeeitheraorb:

212 beela, bl ~—sc=ave=h.

We may call {q, b} the pair class of a and b. Since both ¢ and b
satisfy the right-band side of 212, we have obviously

213 Fae{a, b} & be{q b}
This device can obviously be extended to classes with three or
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more members. It can also be extended in the other direction to
classes with exactly one member. Thus {a) will be the class whose
sole member is a. We may define

la) ={x1x=aj}
and then it will follow that
2 Fhe{ag) st b =g
215 Foef{ay.

{a} may be called the unit class of ¢. The unit class of o is not the
same as a itself; we shall se¢ later the importance of distinguishing
the two.

It may happen that, when we state a condition for membership of
a class, it turns out that nothing satisfies that condition. What are
we to say about the class in this case? What, for example, about
{x: x is a unicorn }, the class of unicorns; or, in general, what about
{x: Fx} when (x)—Fx? It proves theoretically simplest to allow in
this case that the class exists and to call it empry. There are no
unicorns; but there is a class of unicorns, and precisely one way of
saying that there are no unicorns is to say that this class is empty.

It1s a (perhaps surprising) consequence of (P2) that any two empty
classes are identical. For two classes are identical if they have
exactly the same members, i.e. if there is no member of one which
is not a member of the other. But if two classes are empty, then
there is no member of one not a member of the other, just because
there is no member of either. Therefore they are identical. Put a
little more formally:

216 (x)—(xe a), (x)—(xe By F (x)}(x € a <> x& B).

This sequent is provable very simply using predicate calculus rules,
and 1s clearly related to 133, one of the paradoxes of formal
implication. Hence by (P2)

217 (x)—(x€ a), (x)—(xeB) b a = f.

In virtue of 217, we may speak of the empty class, or, as it is
more commonly called, the null class. We shall denote it by ‘ A,
and we may define it by stating any condition which we know nothing
satisfies, say that of being not identical with oneself. Thus

A={x:x#x}
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The null ciass is the class of x such that x is not identical with itself.
Since, as a matter of logic, (x)(x = x}, it is easy (o prove by (P}
218 F(x) — (xe A).

The intersection of a class with its own complement is empty, as
we should expect. Thus we can prove

218 Foerma! = A,

For suppose aeam a'. Then by 205 ae e & ae o', whence by 209
aca & —(zea), which is 2 contradiction. Thus (x)—(xe e al},
whernice 219 follows from 217 and 218.

The complement of the null class will ciearly be the class of which
everything is a member; thus, for any given interpretation in some
universe of discourse, it will be the class of things in that universe.
We may call it the universe class, denote it by * V', and define it

Ve{xix=x}
Thus V is the class of things identical with themselves, and, since as
a matter of logic (x)(x = x), it is easy to prove by (P1)
220 F(x)(xe V).

It should be obvious that, in virtue of (P2}, any two classes which
have everything as members are identical. We have

221 (x)(xea), (x)xe Bt a= £

Using 220 and 221, we may show that the union of a class with its
own complement is, as we should expect, the universe class:

22 taua =V,

An important relation that may exist between two classes is that
of inclusion. A class a is included in a class B if all the members of «
are members of 8. We then write ‘¢ < 8°, and adopt the definition

Df.c: o« € B4 (x)xea> xsh)

The inclusion-relation must be carefully distinguished from the
membership-relation. Suppose I am an inhabitant of Chelsea.
Then I am a member of the class of inhabitants of Chelsea. Further,
since all inhabitants of Chelsea are inhabitants of London, the class
of inhabitants of Chelsea is included in the class of inhabitants of
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iondon, so that I am a member of this latter class too. But the
class of inhabitants of Chelsea is not a member of the class of
inhabitants of London: if it were, it would be an inhabitant of
London; but classes, unlike people, are not inhabitants of any place.
Again, the class of whales is included in the class of mammals, but
it is not a member of that class, since, being a class, it is not a whale.
If Rufus, however, is & whale, then 1t is 2 member of the class of
whales and so & member of the class of mammals. But Rufus, not
being & class, is not included in the class of mammals, any more
than L, if I Iive in Chelsea, am included in the class of inhabitanis
of London, though 1 am a member of that class.

Hence arises the importance of distinguishing objects from their

unit classes. For if [ am a member of the class of inhabitants of
Chelsea, then my unit class is included in that class, since all its
members (in this case only one) are members of the class. We have
in fact
23 baca-es{g) S a.
An object is a member of a class if and only if its unit class is
included in that class. Inclusion Is a relation between classes:
membership 1s (typically} a relation between an individual and a
class.?

The more obvious properties of the inclusion relation are given

in the following theorems, which in general follow immediately
from its definition.

24 Fa € a:

25 ta c P&B S Yy—>aCy;
226 Fa
227 A € a
228 FaC V.

224-226 are, in a sense, theorems of predicate calculus wearing a
thin disguise. For example, when unabbreviated, 224 is merely the
law of identity (x)(xe a->=~xea). Similarly, 227 and 228 (the null
classis included in any class, and any class is included in the universe

in

B>p' < ol

1 Of course, we do not rule out the possibility of classes with classes as members:
indeed, the advanced theory of classes would have little interest if such classes
were not admitted.
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class) are class-analogues of the paradoxes of formal implication 133
and 132. Shghtly harder to prove are the following:

229 Lo S BP&B C astsa = f!

230 ho € ftmra Uf = B

23t Fa € ftma M B = a.

I give an imformal proof of 231. First suppose o < £, and let
aeo. Thenclearlyge B, and soaea ~ B. Conversely, if asa B,
then ce « anyway. So that ce e ~ Fif and only if ge a, whence
by (P2) ¢ n f == a. This proves the conditional from left to right.
MNow suppose a m B = «, and let aca. Then gea n f, whence
ae B. Hence any member of « 1s 2 member of £, so that « © £,
This proves the conditional from right to left, and completes the
proof of 231

I shall not here develop further the elementary theory of classes.
But the reader will no doubt have detected many analogies between
this theory and the propositional calculus (compare 231, for
example, with the tautology °Fs>-(Q (P& O Py, and
he may. if he wishes, devise and prove other theorems for classes
on the basis of this comparison; or he may profitably consulit
Suppes [25]. I would rather conclude on a note of hesitancy. For,
though it may appear that our theory of classes has proceeded
smoothly enough from intuitively acceptable assumptions, there are
certain difficulties that must be overcome if we are to have a con-
sistent and workable system.

Consider, first, the apparently inoffensive result 220, (x){(xe V}.
Are we to allow, as a conseqguence by UE, Ve V7 If the universe
class is the class of which everything 1s 2 member, as we defined it
to be, then is it 2 member of itself? Perhaps we might aliow this
as a theorem!; but there is certainly something intuitively gueer
about a class which has itself as @ member. Certainly, all classes
we ordinarily consider are not self-membered: the class of whales,
for example, is not itself a whale, the class of natural numbers is
not itself a natural number. The question as to whether there are
self-membered classes leads us to consider the class of classes which
are not self-membered, or, in our curly-brackets notation

{x: —(xex)}

+1t is a theorem of the theory of classes in Quine [18]; but it is rejected in most
theories of classes.
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Appendix B

—ihe class of objects x such that x is not 2 member of itself. Let us
call this class R. Then, as we have seen, most classes we normally
handle are members of R.

In virtue of (P1), the condition for membership of R is given by
the biconditional

(10) ae{x: —{x& x)} =3 —(acal,
or
(11) e R > —(ac a).

But (11) holds for arbitrary a: taking a as R itself, we have
(12) Re R < —(R e R).

(12} leads directly to a contradiction. This contradiction was first
discovered by Russell, and the paradox obtained by considering the
class of classes which are not members of themseives is known as
Russell's paradox.

It is important to stress that the implicit contradiction (12) has
been obtained by entirely elementary reasoning from (P1). And itis
no exaggeration to say that modern theories of classes all have as their
starting-point some device for the avoidance of paradoxes such as
Russell’s. Russell’'s own escape-route was, essentially, to rule out
expressions such as ‘aea’ as not well-formed and to develop a
hierarchy of classes in such a way that the membership-relation can
only meaningfully be said to hold between an object at one level and
a class at the next level up. The resulting theory of types has a certain
naturalness, but is awkward and clumsy to work with in practice.
Other theories accept ‘aea’ as well-formed (though in general
false), and avoid contradictions by imposing further conditions on
the right-hand side of (P1). Yet other theories seek to avoid the
Russell paradox by questioning the assumption behind (P1) that
every predicate * F’ determines a class {x:#Fx}. There is as yet
no general agreement amongst logicians as to the best or the proper
way of avoiding Russell’s paradox. But one thing at least is clear:
(P1), despite its intuitive attractiveness and apparent self-evidence,
cannot be accepted as it stands. And it is one merit of modern
symbolic logic to have shown just this. There may also be a
philosophical moral to be drawn concerning the dangers of over-
reliance on intuitions; but this is not the place to draw it.
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Notes

1. Students wishing t0 pursue the topics and methods of this book in
greater detail should try [3], [4], [9], [14], [17], [24]). [24) will seem most
familiar, and goes 2 good deal further than my treatment in many respects;
[4] is closest in terms of the actual rules of derivation employed. [3], [9],
and {24] are rich in exercises which can be used as a supplement to this
course. [17] has a nice treatment of truth-table testing, but ¥ personally
don’t like its quantifier rules. [9]is up to date and very accurate, but a bit
hard. [14] is a very thorough and lucid survey of modern techniques in
logic.

2. Students interested in the propositional calculus from standpoints
other than the present one (e.g. an axiomatic approach rather than a
natural-deduction one) should consult [1],[7], [1 6], or, best of all, [2], which
is a very comprehensive treatment, though hard going.

3. Students interested in the predicate calculus from other standpoints
might try [7], [14], [15], [18]. Again, a comprehensive treatment is in [2].

4. For traditional logic, use [8] if you want to be thorough, [22} if you
want to be brisk, and [12} if you want to be up to date and (Jargely)
accurate. [13] is an excellent account of the logic of the Stoics, who
anticipated many aspects of the propositional calculus as well as the
philosophical theories of Frege.

5. The history of logic is probably best studied in [11}; {12} and [13] form
useful supplements on ancient Jogic, and there are interesting historical
comments throughout [16]. [5] and [27] (especially the introductory
chapters) are modern classics.

6. Those interested in philosophical issues related to formal logic should
read [5], [6], [21], and [23]. The first chapter (Chapter 0) of {2] deserves to
be read several times by all philosophers.

7. For the theory of classes, begin with [25]; then use [18] and [19].
These will suggest further lines of study.

8. For other aspects of more advanced logic, [10] is indispensible, but
difficult for those without a mathematical background. [15]is also useful
-——more up to date in some ways than [10], but less accurate and very
condensed ([10] also contains a good chapter on the theory of classes).
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[20] goes a long way in a few pages, but will appeal more to mathematicians
than philosophers. [26] gives an excellent idea of the kind of work that
went on in logic between the wars, and many of the papers in it are
foundation-stones for much contemporary work. For some interesting
by-ways in modern iogic (e.g. many-valued logics, modal logics}, begin
with [16], which has a useful bibliography for further reading.

9. If you are in this thing seriously, you will need, more than anything
else, [2] and [10]. If you find mathematical proofs difficult, trv a change of
pace—read them slowly and several times over, at first fairly casualiy,
later not leaving 2 sentence uniil vou are cerfain vou understand it. I it
helps, bear in mind that professional mathematicians find them hard too.
A good proof can be savoured in much the way a professional game of chess
is by enthusiasis, and in a similar manner records 2 fragment of intellectual
history: don’t rush it.

10. Logic texts display a rich variety of different symbols for the same
operations, and there is little sign of any growing uniformity. This is
something one must jearn to live with.
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A ¢ see rule of assumptions
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algebra, 49, 56, 71, 94, 98, 104 156, 202
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fallacy of denying, 17-18
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any ’, 96, 101
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12, 116
arbxtrary name(s), ix, 107,
129-30, 138, 139, 155
argument(s), 111, 5, 6, 12, 167
circular, 34
pattern(s) of, see
argument
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soundness, 1-2, 5, 8, 81 : see also
soundness
argument-frame, 12, 52
Aristotelian theory of the syllogisni, 94,
169, 171 ; see also theory of the
syllogism
Aristotle, 94, 169, 173, 174
arithmetic, 39, 192
assertion-sign, 11, 48, 50
associative laws, 191ff.
assumption(s), §-9, 12, 52
discharged, 15
existential, see existential
and premlss(es) 8
recorded in proof, viii, 8-9, 10
rule of, see rule of
special, 108
asymmetric, 180-1, 182, 183, 184, 185,
186, 188
‘at least n’, 165
‘ at least one ’, 97, 165
‘ at least two °, 97, 164
‘at most one ’, 165
atom, 189

114, 115,

pattern(s) of

atomic senfence, 139-40
and identity, 161

axiomatic development of a calculus
viti, 212

Bagson, A. H., 18%n

B;rnay.s{ P, 1x )

biconditional, 79 33, see also © if and

%

only if 7, © ~s °
bracket(s} 7 43 46-7, 139
curly, see curiy

calculus, intuitionist, 1x
minimal, ix
predicate, see predicate
propositional, see propositional
sentential, 42 ; see also propositional
calculus
canonical
conjunctive normal form, 198ff.
disjunctive normal form, 198f.
C.C.NUF., see canonical
C.D.N.F., see canonical
Church, A., ix, 152n., 157n., 158
circular argument, 34
class(es), 201
complement, see complement
determination of, 201,
empty, 206 ; see also null
and identity, 202
inclusion, see inclusion-relation
intersection, see intersection
membership, see  membership-
relation
null, 206-7 ; see also empty class
operatnon(s) on, 203ff.
pair, 205
and property, 202
and propositional
theory of classes
self-membered, 209-10
theory of, see theory of
union, see union
unit, see unit class
universc, 207
class-variable(s), 202

caleulus, see
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clause, exiremal, see cxtremal
refative, 101
C.NLF., see conjunctive normal form
coimplicant, 70
common noun(sy, 160
commutative laws, 191ff.
complement, 204, 205
complete, logical system, 90
propositional, predicate calculi, see
completeness
rules, see rule(s)
completeness, propositional caleulus,
8391, 90, 155, 158, 189 . see afso
compiete
predicate calculus, 155, 1578
complex conjunction(s), 191, 196
disjunction(s), 191, 196
conclusion, 1, 8, 12, 171
condition, necessary, see necessary
sufficient, see sufficient
conditional, corresponding, see corre-
sponding
proof, rule of, see rule of
proposition. 7, 14-15, 17, 77, 94
see also “if .. then..., ‘"
conjunct, 19
conjunction, 19, 123, 191 :
‘and’, "t &7
complex, see complex
elementary, 190ff.
infinite, see infinite
and universal quantifier ((x)} "),
10417, 120, 123
conjunctive normal form, 190ff.
connective(s), logical, see logical
main, see main
consequent, 7
fallacy of affirming, 17-18
consistency, propositional calculus, 75~
82, 90, 155 ; see also safe
predicate calculus, 155, 157
consistent, logical system, 80
propositional, predicate calculi, see
consistency
wil, 68
contemporary logic, 94 see also
mathematical, symbolic logic
contingency, 68, 92
contingent (wff ), 68, 72, 189, 197
substitution-instance, 72-3
contradiction, 26, 68, 80 ;
non-contradiction
contradictory, 68, 70, 170
contrary, 69, 170
converse domain, 187
conversion, laws of, see law(s)
CP, see rule of conditional proof
corresponding conditional, 76, 148-9,
153, 157
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see also

Corollary I, {consisiency) 80, {com-
pleteness) 90 ; II, (consisiency) RO,
(completeness) 90

cross-reference (variables), 174, 14t

curly bracket(s}, 201, 205

declarative sentence, 6
deduce, &
deduction, &
natural, see natural deduction
definite description(s), 160, 166-7
definition, ostensive, see ostensive
stipulative, 33
demonstrative (words, phrases), 160
de Morgan's laws, 62, 191, 205
denying the antecedent, fallacy of,
17-18
depend on, see rest on
derivable sequent(s}, 75, 76, 77, 81, 83,
84, 90, 157 ; see also proved, valid
sequent{s)
derivation, rule(s) of, see rule(s)
derivational approach, 90-1
derive, 8
derived ruie(s), 57, 61, 62, 64, 80-1, 159
description, see definite description(s)
direct reduction, 174
discharged assumption, 15
disjunct, 17
typical, 112, 146, 148
disjunctive normal form, 190ff.
disjunction, 17, 123, 191 ; see also
‘either...or..., ‘v’
complex, see complex
elementary, 1891
and existential quantifier (¢ (dx} "),
111ff., 120, 123
infinite, see infinite disjunction
distinct variables, 99-100, 164
distinguished normal form, 199-200
distribution (terms), 177-8
distributive laws, 62, 191ff.
DN, see rule of double negation
D.NUF., see disjunctive normal form
domain, 186-7
double arrow, 29
double negation, law, see law(s)
rule, see rule of
dyadic, relation, 180
relational expression, 179

e.c., see elementary conjunction

e.d., see elementary disjunction

EE, see rule of existential guantifier
elimination

E-form proposition(s), 94, 169fT., 175,
177

El, see rule of existential quantifier
introduction
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clementary conjunction, 90
disjunction, 189ff,
climination, rules of, 19
existential quantifier elimination, see
rule of
identity elimination, see rule of
universal quantifier elimination, see
rule of
&-climination, see rule of
veelimination, see rule of
empty class, 206
field, 187
termis), 175, 177
universe, 156
entail, 1
equivalent, 70, 192-3
Euclid, 106
‘every ’, 106
“everything ’, 94-5, 96, 9§
¢ exacﬂy one’, 1656
‘except ', 101
excluded m;dd
existential
assumption(s), 175-7, 182
proposition(s), 102, 122-4
quan‘aﬁer 96, 99, 102, 111-16, 141,
143
and disjunction (" v "), 111§., 120,
123

L6, 19 see also

law of, see law(s)

eli nination, rule of, see rule of
int:oduction, rule of, see rule of
expression, algebraic, 64
relational, 179
sequent-, see sequeni-expression
extremnal clause, 46, 141

fallacy of affirming the consequent,
17-18

denying the antecedent, 17-18§
undistributed middle, 178

false, the truth-value, 64-5

falsity, see truth

field, 187

figure(s} of the syllogism, 172ff.

first figure, reduction to the, 174

Fitch, F. B., ixn.

fixed universe of discourse, 204

follow from, 1

‘for any x°, 95

form, of argument, 5;

pattern(s) of argument

logical, see logical form

formal implication, 154
paradoxes of, see paradox(es)

formal Ianguage 4211,

formation rules, propositional calculus,

]

see also
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predicate caiculus, ix, 139, 1403, 144
with identity, 161

formula, propositional calculus, 44, 46
predmate calculus, 139

foundations of mathematics, 20!

free variabie, ix

Frege, G., 169, 212

function(s)s 71, 143
mathematical, 7}
numerical, 143
propositional, see propositional
siroke, 74
truth-, see truth-function(s)

Geach, P., 100#.

generality, 55-6

Oentzen, G, vili, ix

Godel, K., 157-8

grammar, 42f1. : see also syniax

Hilbert, D, ix, 157n.
Hintikka, K. J. J., ixn
Fstory of logic, 169,

idempotence, laws of, 1911,
identity, 159-67, 180, 182, 187, 188
and class, 202
elimination (=), rule of. 160
introduction (=1}, rule of, 160
law of, see kaw{s)
“if and only if . , 28-30 see also
bxcondxtxonal proposnmn e
“if . then. .., 6-7, 28-9, 33, 60. 82 :
see a[so ‘conditional pmposition
e
I-form proposition(s}, 169ff., 175, 177
implication, 69-70
formal, see formal
material, see material
implies, 69—70, 170
included in, 207
mclusmn-relatlon 207-8
mconSIStency, 68 ; see also inconsistent
inconsistent (wff ) 68, 72-3. 189, 197
substitution-instance, 72
independent (pronosmons) 70
indirect proof, 27, 36, 37 ; see also rule
of reductio ad absurdum
reduction, 174
individual vanable(s} 94,138, 139, 141,
155, 164, 179
mducnon proof by. see proof
inference, rules of, see rule(s)
infinite conjunction, 111, 112
disjunction, 111, 112
irreflexive, 183, 184, 185, 186, 188
“is’, 160ff,
of identity, 160ff.
of predication, 160

5
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“is a member of °, 201
“is implied by *, 70
‘ is the same object as °, 160
‘1t (and individual variables), 95
integer, non-negative, 105
positive, 105
interderivability, 34-5
internal structure (of a proposition),
93, 167
interpretation, 156
true under in non-empty universe(s),
156-7 .
intersection, 204, 205
intransitive, 183, 185, 188
introduction, rules of, 19
existential quantifier introduction,
see rule of
identity introduction, see rule of
sequent introduction, see rule of
theorem introduction, see rule of
universal guantifier introduction, see
rule of
&-introduction, see rule of
v-introduction, see rule of
intuitionist propositional calculus, ix
predicate calculus, ix
mvalid, see valid, validity
invalidity, 64, 81 ; see also validity

Johannson, 1., ixn.
Joseph, H. W. B., 169n., 17in.

language, formal, 42ff.
law(s), associative, 191ff.
commutative, 191fT.
conversion, 170-1, 177
per accidens, 171
simple, 171
de Morgan’s, see de Morgan’s
distributive, see distributive
of double negation, 52, 191, 205
of excluded middle, ix, 52-3, 64-5,
91, 149
of idempotence, 191l
of identity, 52, 149, 208
logical, see logical law(s}
of non-contradiction, 52, 149
of obversion, 171
lemma, 84
letter, 150
predicate, see predicate-letter(s)
schematic, see schematic
logic(s), ancient, 212
defined, 5
history of, 212
many-valued, 213
and mathematics, see mathematics
modal, 213

220

nature of, 1-5

Stoie, 212
see also contemporary, mathemati-
cal, symbolic, traditional logic
logical
connective(s), 43, 65, 69, 139
main, see main connective
ranked, 467
SCOpE, see SCope
subordination, see subordination
form, 4, 5, 7-8, 55-6, 69,92, 93, 167 ;
see also pattern(s) of argument
law(s}, 52, 69
notation, 3, 4, 39, 167 ; see also
fogical svmbol(s), symbolism
relation(s}, 69-71, 169
symbol(s), 3, 4 see also logical
notation, symbolism
system, 80, 90, 186
truth(s), 52, 69, 149
jogically true, 52, 69
and interpretation, 157
valid, 157
tukasiewicz, J., 174n.

main coluimn, 66
connective, 48, 66
major premiss, 171, 179
term, 171
many-valued logics, 213
material implication, 60-1, 154
paradoxes of, see paradox{es)
Mates, B., viiin., ixn.
mathematics, 77. 91
foundations of, 201
and logic, 3, 42, 186
mathematical concepts, 186
functions, 71
induction, 85 ; see also proof by
induction
logic, 3 ; see also contemporary,
symbolic logic
symbol, 4
matrix{es), 65, 156
mechanical check of proof, 39, 67, 158
proof-discovery, 90, 91, 158
test, 157
member, 207-8
membership-relation, 186, 202, 207-8
metatheorem, 77 )
Metatheorem I, 77, 81, 85 : Meta-
theorem II, 83-4, 88, 91 ; Meta-
theorem III, 84, 89, 91
metalogical variable, 49, 139
minimal calculus, ix
minor premiss, 171
term, 171
modal logics, 213
modi, 61-2



modus ponendo ponens, 61
rule of, see rule of
ponende tollens, 36, 61
ruje of, see rule of
tollendo ponens, 61
rule of, see rule of
tollendo rollens, 61, 62
rule of, see rule of
MPP, see modus ponendo ponens
MPT, see modus ponendo tollens
MTE, see modus tollendo ponens
MTT, ser modus tollendo tollens

name(s), see arbitrary, proper
natural deduction, viii, 90, 212
number(s), 77, 105, 111, 156, 186, 187
structure, 48
necessary condition, 28, 29
negation, 7, 13 ; see als¢ ‘not’, " — ",
double negation
negative term(s), 171
‘peither . . . nor . ..
‘no’, 96
‘none’, 96
non-contradiction, law of, see law(s)
non-empty term(s), 175, 176, 177
universe(s) of discourse, 156-7, 176,
184

*, 74

non-negative integer(s), 105
non-reflexive, 184, 188
non-symmetric, 182, 183, 188
non-tautologous (wff ), 68
non-transitive, 183
normal form(s), 189-200
‘pot ', 67,33 ; see also negation, * —
‘notboth...and..." 74
notation, logical, see logical notation
‘ nothing °, 94-5, 96, 98
noun(s), abstract, 160
common, 160
null class, 206-7
number(s), 49, 56, 98§, 104, 143
rational, 186
real, 186
see also natural number
numerical function, 143
variable, 49, 202
numerically definite quantifier, 165-6

obversion, 171

O’Connor, D. J., 185n.

O-form proposition(s), 169f., 175, 177
“only *, 101-2

‘only if ... then...", 28

operation(s) on classes, 203f.
operator(s), 6

opposition, square of, see square

Index

order of proper names, 98
proper names and variables, 95
guantifiers, 99

ostensive definition, 43, 138

(P1}, (P2}, see principle(s)
pair class, 205
paradox(es)
of formal implication, 154, 181, 208,
208-9
of material mplication, ix, 60, 82,
154
Russell’s, 210
particular affirmative, 169
negafive, 169
pattern(s) of argument, 5, 12, 81, 62 :
see also form of argument, logical
form
syllogism, 172f.
philosophy, 52, 161, 169, 186, 210, 212
polyadic relational expression, 179
positive integer(s), 105
predicate, 93, 177, 179
calculus, 91, 93, 104, 140, 145, 156,
137, 158, 168-9, 176, 212
with identity, 161, 163
interpretation in non-empty uni-
verse{s), 156, 176
intuitionist, ix
notation, see quantifier notation
and propositional calculus, 93, 94,
104, 139, 140, 145, 157, 158
rules, see rule(s)
and the syllogism, 168-9, 174-7
predicate-letter(s), 93, 98, 138, 139, 149,
161, 180G
premiss{es), 1, 171
and assumption(s), &
major, 171
minor, 171
recorded in proof, 10
primitive rule(s), 57, 62, 64, 76, 80, 159
principle(s)
of obversion, 171
(P1), 202, 203, 210 ; (P2), 202, 203
guantifier-shift, 128-30
(R), 192
(81}, 54-5; (82), 55, (§'h, 1582
82y, 153
square of opposition, see square
of the syllogism, see rule(s)
progressive, 42, 60
proof, 11, 12
completeness, see compieteness
conditional, see rule of
consistency, see consistency
indirect, see indirect proof
by induction, 77 ; see also mathe-
matical induction
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proof—conid
mecharnical check of, discovery of.
see mechanical
procedure, viii, §9, 10
stages of, &, 77
proof-discovery, vii, 62, 67, 9¢, 91,
114-15, 158
proper name(s), 93, 114, 138, 139, 160,
166, 167, 179
properiy, 98, 149, 17%
and class, 202
property-expression(s), 93
proposition(s) (or statement(s)), 1, 69—
71, 93, 141
A, E- I+, O- form, see A-, E-, I-,
O- form
and argument, 52
conditional, see conditional
existential, see existential
internal structure, see internal
particular affirmative, pegative, 169
and propositional function(s), 143,
179

and sentence, 6, 55-6, 141, 179
and truth, 2
urniversal, see universal
affirmative, negative, 169
propositional calculus, 42, 93, 94, 104,
139,167, 212
compilete, see completeness
consistent, see consistency
intuitionist, ix
and predicate calculus, 93, 94, 104,
139, 140, 145, 157, 158
rules, see rule(s)
and theory of classes, see theory of
connective(s), see logical connec-
tive(s)
function, 141, 1434
and properties
14911, 179
and propositions, 143, 179
variable(s), 7, 43, 49, 55-6, 139, 140,
156, 189
proved sequent(s), 12; see
derivable, valid sequent(s)

and relations,

also

quality, 178
quantifier(s), 123, 143, 179
existential, see existential
notation, translation into, see trans-
lation
numerically definite, 165-6
rules, ix, 104, 145-6
scope of, 1434
universal, see universal
vacuous, see vacuous
quantifier-shift principle(s), 128-30
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guantity, 178
Quine, W. V. G., 158, 163n., 166a.,
209k,
(F), 193
RAA, see rule of reductic ad absurdum
range, 187
rank, of connectives, 467
rational numbers, 186
real numbers, 186
reductioc ad obsurdum, rule of ; see
rale of
reduction to the first figure, 174
refiexive, 183, 184, 187, 188
relationds), 98, 128, 149, 159, 177, 179,
17988, 186
antisymmetric, see antisymmetric
asymmetric, see asymmetric
dyadic, 180
inclusion-, 207-8
intransitive, see intransitive
irreflexive, see irrefiexive
logical, see logical relation(s)
membership-, see  membership-
relation
non-refiexive, see non-refiexive
non-symmetric, see non-symmetric
non-transitive, 183
properties of, 177, 17988
reflexive, see reflexive
serial, 187
symimetrical, see symmetric
transitive, see transitive
relational expression(s), 98, 179
sentence(s}, 98
relationship(s),
relation(s}
relative clauses, 101
reston, 8, 9
reverse-E, 139
replacement, principie of ((R)), 193
rule(s)
complete (propositional calculus),
42, 83 ; see also completeness
of derivation (inference), 3, €, 8, 39,
64, 69, 91
propositional caiculus, viii; résumé
of, 39-40
predicate calculus, ix, 145
with identity, ¢f. 161
recorded in proof, 8, 10
derived, see derived
formation, see formation
primitive, see primitive
of quality, 178
guantifier, see quantifier
of quantity, 178
safe, 42, 751, 81, 90 ; see also
consistency

logical, see logical



rule(sy—contd
of the syllogism, 173, 178
and truth-table test, 64, 69, 91
ruie of
assumptions (A, 9-11, 34, 39, 78
conditional proof (CP), 14-16, 40,
78-9
double negation (DN}, viii, 13-14,
existential  quantifier
(EE), 112-16, 145-6
restrictions on, 115-16
and vE, 112-16
existential guamtifier
(E@), 111, 145-6
identity elimination (=E), 160
identity introduction (=1), 160
modus porendo porens (MPP), 9-11,
39,78
modus ponendo tollens (MPTY), 61
modus tollende ponens (MTP}, 61
modus tollendo tollens (MTT), 12-13,
40, 62, 78
reductio ad absurdum (RAA), 26-7,
40, 80, 174
sequent introduction (81}, propo-
sitional caiculus, 56-7, 60, 61,
80-1
predicate calculus, 108, 153, 155
theorem introduction (TI), propo-
sitional calculus, 56-7, 60, 80-1
predicate calculus, 153, 155
universal quantifier elirnination (UE}),
104-6, 107, 109, 129, 145-6
universal quantifier introduction
(UI), 104, 106-9, 129, 145-6
restriction on, 108-9
&-elimination (&E), 19, 20~1, 40, 79,
104, 105
&-introduction (&I}, 19-20, 40, 79,
104, 106
v-elimination (vE}, 19, 22-5, 40,
7%-80. 111, 112-14
v-introduction (vI), 19, 22,40,79, 111
Russell, B., 60, 154, 167, 169, 210
Russell’s paradox, 210
theory of definite descriptions, see
theory of

(S1), 54-5; (82), 55; (81), 152;
(8°2), 153

elimination

introduction

safe (rules), see rule(s), safe

schematic letter, 5, 7

scope, logical connective, 47-8, 143
quantifier, 143-4

self-contradictory, 68

self-membered class, 209-10

sentence(s), analysis of, 167
atomic, see atomic

Index

declarative, 6
and proposition, 6, 55-6
in propositional calculus symbolism,
43, 47
relational, 98
subject-predicate, 160
sentence-forming operator(s}, &
sentential  calculus, 42 ;  see ciso
propositional calculus
sequent, 12, 50
derivable (provabie, proved, valid),
see derivable
mtroduction, rule of, see rule of
sequent-expression, propositional cal-
culus, 48-9, 55
predicate calculus, 145, 153
tautologous, see tautologous segquent-
EXPTESSIOn
truth-table test on, 75
serial relation, 187
SI, see rule of sequent introduction
‘so’, ]
Stoic logic, 212
‘some ', 92-102, 96, 97, 98
‘some...not..., 97 98
sound (argument), 1, 2, 5: see also
soundness
soundness, Iff., 9
and unsoundness and truth and
falsity, 2, 9, 52 ; see also validity
special assumption(s), 109
square of opposition, 169-70, 175-6,
177
standard instance(s), 173
statement (or proposition), 1
Stebbing, L. S., 169n., 171n.
stipulative definition, 33
strategy, see proof-discovery
Strawson, P. F., 169
stroke function(s), 74
subalternate, 70
subcontrary, 69, 170
subimplicant, 70
subject, 177
subject-predicate sentence(s), 160
subordination, 48, 66
substitution, individual variable(s), 155
name(s), 155
predicate-jetter(s), 149-52
substitution-instance, contingency, 72~

inconsistency, 72
sequent - expressior,
calculus, 55

predicate calculus, 153
tautology, 72
wif (propositional calculus), 53-4,
152

propositional

sufficient condition, 28, 29
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Inaex

superalternate, 70

superimplicant, 70

Suppes, P., viii, 186n., 209n,

syllogism, defined, 171-2
figures, 172

and predicate calculus, 168-9, 174-7

rules, see rule(s)
table of valid patterns, 176-7
theory of the, see theory of
vahid patterns
symbol, logical, see logical symboi
mathematical, 4
propositional calculus, 434, 49
predicate calculus, 139
symbolic logic, vii, 3 ; see alse con-
temporary, mathematical logic
symbolism, 3ff,, 39 ; see also logical
notation, symbol(s)
sentence in propositional calculus,
43, 47
symmetric, 180, 181, 182, 183, 184, 186,
187, 188
syntax, propositional calculus, 42ff,
47

predicate calculus, 139
see also grammar
syntactical notion(s), 47-9

table of valid patterns of the syllogism,
176-7
tactics, see proof-discovery
tautologous, sequent-expression(s), 75—
76, 77, 80, 83-4, 89, 90, 155,
157
theorem(s), 75, 80
wil (s), 68ff., 72, 73, 84, 189, 197
substitution-instance, 72
tautology, 68-9
substitution-instance, 72
term(s)
distribution of, 177-8
empty, see empty term(s)
major, 171
minor, 171
negative, 171
non-empty, see non-empty termqs)
predicate calculus, 139, 150, 179
traditional logic, 169, 177-8
T1I, see rule of theorem introduction
‘the’, 102, 160, 166
theorem
introduction, rule of, see rule of
propositional calculus, 50, 51, 52,
54-5, 56, €9, 75, 77, 80, 84, 148
predicate calcutus, 148, 153
theory of
classes, 186, 20110, 212
and propositional calculus, 201,
209
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definite descriptions, 166-7
the syliogism, 168-79, 182
types, 210
valid patterns, 173ff
‘ there 1s an x such that . . °, 97
‘ therefore *, 1, 11}
traditional logic, 69-70, 94, 98, 169,
212
transiation into quantifier-notation, 94,
97ff., 102
transitive relation, 182, 183, 184, 185,
186, 187, 188
verb(s), 9¢
true, logically, see logically
under interpretation in non-empty
universe(s), 156-7
the truth-value, 64-5
truth(s}
and faisity and soundness and un-
soundness, 2, 9, 52 . see also
validity
logical, see logical truth(s}
table approach, 64, 81, 90, 91
table method, ix, 64-6, 69, 90, 189
table test, 66-7, 68, 81, 84, 901, 156,
197-8, 199-200
and rules of derivation, see rule(s)
on sequent-expression(s), 75, 156
truth-function(s), 70-2, 74, §2
truth-value(s), 64-5, 70, 156
types, theory of, 210
typical disjunct, 112, 146, 148

UE, see rule of universal quantifier
elimination
Ul, see rule of universal quantifier
introduction
undistributed, 177-8
middle, faliacy of, 178
union, 203-4, 205
unit class, 206, 208
universal
affirmative, 169
negative, 169
proposition(s), 102, 1224
quantifier, 95, 96, 99, 102, 104-9, 111,
140-1, 143
and conjunction (‘& "), 104ff.,
120, 123
elimination, rule of, see rule of
introduction, rule of, see rule of
universe, 156ff.
class, 207
of discourse, 104, 156, 204
empty, 156
non-empty, 156
‘unless .. ., then.. ., 33
unsound {argument), see sound
unsoundness, see soundness



vacuous quantifier(s), ix, 141-2, 144
valid
argument(s), 2, 5 see also validity
iogically, 157
patterns of the svliogism, 1736
table of, 176-7
sequent(s), 52 . see aisc derivabie,
proved sequent(s}
validity, 5, 9, 12, 52, 64 ;
soundness
and truth, 5, 52
value, truth-, see truth-vaiue(s)
variable(s)
class-, 202
and cross-reference,  see
reference
distinct, 99-100, 164

see giso

CrOs8-

Iridex

free, ix
individual, see individual
metalogical, see metalogical
numerical, see numerical
propositional, see propositional
vel, 19
verb(s), transitive, 98

well-formed  formula (wff }, propo-
sitional calculus, 446, 47, 64-7,
68, 85, 140, 189, 1914
natural structure, 48
predicate calculus, 139, 140--3, 144
156-7
with identity, 161
wif, see well-formed formula

s
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